Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656959

RESUMO

Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.


Assuntos
Células-Tronco Hematopoéticas , Leishmania infantum , Animais , Células-Tronco Hematopoéticas/parasitologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Humanos , Leishmania donovani/fisiologia , Macrófagos/parasitologia , Macrófagos/metabolismo , Leishmaniose Visceral/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C
2.
Nucleic Acids Res ; 50(1): 293-305, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893872

RESUMO

Leishmania, a unicellular eukaryotic parasite, is a unique model for aneuploidy and cellular heterogeneity, along with their potential role in adaptation to environmental stresses. Somy variation within clonal populations was previously explored in a small subset of chromosomes using fluorescence hybridization methods. This phenomenon, termed mosaic aneuploidy (MA), might have important evolutionary and functional implications but remains under-explored due to technological limitations. Here, we applied and validated a high throughput single-cell genome sequencing method to study for the first time the extent and dynamics of whole karyotype heterogeneity in two clonal populations of Leishmania promastigotes representing different stages of MA evolution in vitro. We found that drastic changes in karyotypes quickly emerge in a population stemming from an almost euploid founder cell. This possibly involves polyploidization/hybridization at an early stage of population expansion, followed by assorted ploidy reduction. During further stages of expansion, MA increases by moderate and gradual karyotypic alterations, affecting a defined subset of chromosomes. Our data provide the first complete characterization of MA in Leishmania and pave the way for further functional studies.


Assuntos
Aneuploidia , Evolução Molecular , Leishmania donovani/genética , Mosaicismo , Análise de Célula Única/métodos , Sequenciamento Completo do Genoma/métodos , Genoma de Protozoário
3.
Proc Natl Acad Sci U S A ; 117(40): 25159-25168, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958676

RESUMO

The tropical Andes are an important natural laboratory to understand speciation in many taxa. Here we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole-genome sequencing of 67 isolates from 47 localities in Peru. We first show the origin of Andean Leishmania as a clade of near-clonal lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host-parasite interactions. Within the Andean species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results suggest that changes in forestation over the past 150,000 y have influenced speciation and diversity of these Neotropical parasites. Second, genome-scale analyses provided evidence of meiotic-like recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species. We further show that mitochondrial minicircles-but not maxicircles-show a similar evolutionary pattern to the nuclear genome, suggesting that compatibility between nuclear-encoded mitochondrial genes and minicircle-encoded guide RNA genes is essential to maintain efficient respiration. By comparing full nuclear and mitochondrial genome ancestries, our data expand our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.


Assuntos
Genoma Mitocondrial/genética , Interações Hospedeiro-Parasita/genética , Leishmania braziliensis/genética , Leishmaniose Cutânea/genética , Ecossistema , Florestas , Especiação Genética , Humanos , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Peru/epidemiologia , Filogeografia
4.
BMC Genomics ; 19(1): 843, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486770

RESUMO

BACKGROUND: Leishmaniasis is a neglected tropical disease with diverse clinical phenotypes, determined by parasite, host and vector interactions. Despite the advances in molecular biology and the availability of more Leishmania genome references in recent years, the association between parasite species and distinct clinical phenotypes remains poorly understood. We present a genomic comparison of an atypical variant of Leishmania donovani from a South Asian focus, where it mostly causes cutaneous form of leishmaniasis. RESULTS: Clinical isolates from six cutaneous leishmaniasis patients (CL-SL); 2 of whom were poor responders to antimony (CL-PR), and two visceral leishmaniasis patients (VL-SL) were sequenced on an Illumina MiSeq platform. Chromosome aneuploidy was observed in both groups but was more frequent in CL-SL. 248 genes differed by 2 fold or more in copy number among the two groups. Genes involved in amino acid use (LdBPK_271940) and energy metabolism (LdBPK_271950), predominated the VL-SL group with the same distribution pattern reflected in gene tandem arrays. Genes encoding amastins were present in higher copy numbers in VL-SL and CL-PR as well as being among predicted pseudogenes in CL-SL. Both chromosome and SNP profiles showed CL-SL and VL-SL to form two distinct groups. While expected heterozygosity was much higher in VL-SL, SNP allele frequency patterns did not suggest potential recent recombination breakpoints. The SNP/indel profile obtained using the more recently generated PacBio sequence did not vary markedly from that based on the standard LdBPK282A1 reference. Several genes previously associated with resistance to antimonials were observed in higher copy numbers in the analysis of CL-PR. H-locus amplification was seen in one cutaneous isolate which however did not belong to the CL-PR group. CONCLUSIONS: The data presented suggests that intra species variations at chromosome and gene level are more likely to influence differences in tropism as well as response to treatment, and contributes to greater understanding of parasite molecular mechanisms underpinning these differences. These findings should be substantiated with a larger sample number and expression/functional studies.


Assuntos
Genoma , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Aneuploidia , Gluconato de Antimônio e Sódio/farmacologia , Gluconato de Antimônio e Sódio/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Sequência de Bases , Cromossomos/genética , Dosagem de Genes , Ontologia Genética , Heterozigoto , Homozigoto , Humanos , Mutação INDEL/genética , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/isolamento & purificação , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Fases de Leitura Aberta/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Virulência/efeitos dos fármacos , Virulência/genética
5.
Mol Ecol ; 26(23): 6524-6538, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28752916

RESUMO

Hybrid populations and introgressive hybridization remain poorly documented in pathogenic micro-organisms, as such that genetic exchange has been argued to play a minor role in their evolution. Recent work demonstrated the existence of hybrid microsatellite profiles in Trypanosoma congolense, a parasitic protozoan with detrimental effects on livestock productivity in sub-Saharan Africa. Here, we present the first population genomic study of T. congolense, revealing a remarkable number of single nucleotide polymorphisms (SNPs), small insertions/deletions (indels) and gene deletions among 56 parasite genomes from ten African countries. One group of parasites from Zambia was particularly diverse, displaying a substantial number of heterozygous SNP and indel sites compared to T. congolense parasites from the nine other sub-Saharan countries. Genomewide 5-kb phylogenetic analyses based on phased SNP data revealed that these parasites were the product of hybridization between phylogenetically distinct T. congolense lineages. Other parasites within the same region in Zambia presented a mosaic of haplotypic ancestry and genetic variability, indicating that hybrid parasites persisted and recombined beyond the initial hybridization event. Our observations challenge traditional views of trypanosome population biology and encourage future research on the role of hybridization in spreading genes for drug resistance, pathogenicity and virulence.


Assuntos
Genética Populacional , Hibridização Genética , Trypanosoma congolense/genética , África Subsaariana , Animais , Variações do Número de Cópias de DNA , Deleção de Genes , Frequência do Gene , Genoma de Protozoário , Haplótipos , Mutação INDEL , Repetições de Microssatélites , Filogenia , Polimorfismo de Nucleotídeo Único , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária , Zâmbia
6.
PLoS Genet ; 10(1): e1004092, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453988

RESUMO

Although asexual reproduction via clonal propagation has been proposed as the principal reproductive mechanism across parasitic protozoa of the Leishmania genus, sexual recombination has long been suspected, based on hybrid marker profiles detected in field isolates from different geographical locations. The recent experimental demonstration of a sexual cycle in Leishmania within sand flies has confirmed the occurrence of hybridisation, but knowledge of the parasite life cycle in the wild still remains limited. Here, we use whole genome sequencing to investigate the frequency of sexual reproduction in Leishmania, by sequencing the genomes of 11 Leishmania infantum isolates from sand flies and 1 patient isolate in a focus of cutaneous leishmaniasis in the Çukurova province of southeast Turkey. This is the first genome-wide examination of a vector-isolated population of Leishmania parasites. A genome-wide pattern of patchy heterozygosity and SNP density was observed both within individual strains and across the whole group. Comparisons with other Leishmania donovani complex genome sequences suggest that these isolates are derived from a single cross of two diverse strains with subsequent recombination within the population. This interpretation is supported by a statistical model of the genomic variability for each strain compared to the L. infantum reference genome strain as well as genome-wide scans for recombination within the population. Further analysis of these heterozygous blocks indicates that the two parents were phylogenetically distinct. Patterns of linkage disequilibrium indicate that this population reproduced primarily clonally following the original hybridisation event, but that some recombination also occurred. This observation allowed us to estimate the relative rates of sexual and asexual reproduction within this population, to our knowledge the first quantitative estimate of these events during the Leishmania life cycle.


Assuntos
Hibridização Genética , Endogamia , Leishmania/genética , Leishmaniose/parasitologia , Animais , Genética Populacional , Humanos , Insetos Vetores/genética , Leishmania/crescimento & desenvolvimento , Leishmania/patogenicidade , Leishmaniose/genética , Leishmaniose/transmissão , Estágios do Ciclo de Vida/genética , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Reprodução/genética , Turquia
7.
Genome Res ; 21(12): 2143-56, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038251

RESUMO

Visceral leishmaniasis is a potentially fatal disease endemic to large parts of Asia and Africa, primarily caused by the protozoan parasite Leishmania donovani. Here, we report a high-quality reference genome sequence for a strain of L. donovani from Nepal, and use this sequence to study variation in a set of 16 related clinical lines, isolated from visceral leishmaniasis patients from the same region, which also differ in their response to in vitro drug susceptibility. We show that whole-genome sequence data reveals genetic structure within these lines not shown by multilocus typing, and suggests that drug resistance has emerged multiple times in this closely related set of lines. Sequence comparisons with other Leishmania species and analysis of single-nucleotide diversity within our sample showed evidence of selection acting in a range of surface- and transport-related genes, including genes associated with drug resistance. Against a background of relative genetic homogeneity, we found extensive variation in chromosome copy number between our lines. Other forms of structural variation were significantly associated with drug resistance, notably including gene dosage and the copy number of an experimentally verified circular episome present in all lines and described here for the first time. This study provides a basis for more powerful molecular profiling of visceral leishmaniasis, providing additional power to track the drug resistance and epidemiology of an important human pathogen.


Assuntos
Resistência a Medicamentos/genética , Dosagem de Genes , Genes de Protozoários , Leishmania donovani/genética , Leishmaniose Visceral/genética , Sequência de Bases , Humanos , Leishmania donovani/metabolismo , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
8.
Genome Res ; 21(12): 2129-42, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038252

RESUMO

Leishmania parasites cause a spectrum of clinical pathology in humans ranging from disfiguring cutaneous lesions to fatal visceral leishmaniasis. We have generated a reference genome for Leishmania mexicana and refined the reference genomes for Leishmania major, Leishmania infantum, and Leishmania braziliensis. This has allowed the identification of a remarkably low number of genes or paralog groups (2, 14, 19, and 67, respectively) unique to one species. These were found to be conserved in additional isolates of the same species. We have predicted allelic variation and find that in these isolates, L. major and L. infantum have a surprisingly low number of predicted heterozygous SNPs compared with L. braziliensis and L. mexicana. We used short read coverage to infer ploidy and gene copy numbers, identifying large copy number variations between species, with 200 tandem gene arrays in L. major and 132 in L. mexicana. Chromosome copy number also varied significantly between species, with nine supernumerary chromosomes in L. infantum, four in L. mexicana, two in L. braziliensis, and one in L. major. A significant bias against gene arrays on supernumerary chromosomes was shown to exist, indicating that duplication events occur more frequently on disomic chromosomes. Taken together, our data demonstrate that there is little variation in unique gene content across Leishmania species, but large-scale genetic heterogeneity can result through gene amplification on disomic chromosomes and variation in chromosome number. Increased gene copy number due to chromosome amplification may contribute to alterations in gene expression in response to environmental conditions in the host, providing a genetic basis for disease tropism.


Assuntos
Cromossomos/genética , Dosagem de Genes/fisiologia , Regulação da Expressão Gênica/fisiologia , Genes de Protozoários/fisiologia , Leishmania/genética , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Cromossomos/metabolismo , Leishmania/metabolismo , Dados de Sequência Molecular , Especificidade da Espécie
9.
J Infect Dis ; 206(5): 752-5, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22753945

RESUMO

The current standard to assess pentavalent antimonial (SSG) susceptibility of Leishmania is a laborious in vitro assay of which the result has little clinical value because SSG-resistant parasites are also found in SSG-cured patients. Candidate genetic markers for clinically relevant SSG-resistant parasites identified by full genome sequencing were here validated on a larger set of clinical strains. We show that 3 genomic locations suffice to specifically detect the SSG-resistant parasites found only in patients experiencing SSG treatment failure. This finding allows the development of rapid assays to monitor the emergence and spread of clinically relevant SSG-resistant Leishmania parasites.


Assuntos
Gluconato de Antimônio e Sódio/uso terapêutico , Antiprotozoários/uso terapêutico , Leishmania donovani/genética , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Animais , DNA de Protozoário/química , DNA de Protozoário/genética , Resistência a Medicamentos , Marcadores Genéticos/genética , Genoma de Protozoário , Haplótipos , Humanos , Índia , Camundongos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Sensibilidade e Especificidade
10.
Sci Rep ; 13(1): 13948, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626131

RESUMO

Emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapies (ACT) is a major challenge for Greater Mekong Subregion countries in their goal to eliminate malaria by 2030. Tools to efficiently monitor drug resistance beyond resource-demanding therapeutic efficacy studies are necessary. A custom multiplex amplicon sequencing assay based on Illumina technology was designed to target the marker of partial resistance to artemisinin (K13), five candidate modulators of artemisinin resistance, the marker of resistance to chloroquine (crt), and four neutral microsatellite loci. The assay was used to genotype 635 P. falciparum-positive blood samples collected across seven provinces of Vietnam and one of Cambodia between 2000 and 2016. Markers of resistance to artemisinin partner-drugs piperaquine (copy number of plasmepsin-2) and mefloquine (copy number of multidrug-resistance 1) were determined by qPCR. Parasite population structure was further assessed using a 101-SNP barcode. Validated mutations of artemisinin partial resistance in K13 were found in 48.1% of samples, first detection was in 2000, and by 2015 prevalence overcame > 50% in Central Highlands and Binh Phuoc province. K13-C580Y variant became predominant country-wide, quickly replacing an outbreak of K13-I543T in Central Highlands. Mutations in candidate artemisinin resistance modulator genes paralleled the trends of K13 mutants, whereas resistance to piperaquine and mefloquine remained low (≈ 10%) by 2015-2016. Genomic tools applied to malaria surveillance generate comprehensive information on dynamics of drug resistance and population structure and reflect drug efficacy profiles from in vivo studies.


Assuntos
Artemisininas , Mefloquina , Vietnã/epidemiologia , Plasmodium falciparum/genética , Genótipo
11.
Microorganisms ; 10(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35056546

RESUMO

Microorganisms can adopt a quiescent physiological condition which acts as a survival strategy under unfavorable conditions. Quiescent cells are characterized by slow or non-proliferation and a deep downregulation of processes related to biosynthesis. Although quiescence has been described mostly in bacteria, this survival skill is widespread, including in eukaryotic microorganisms. In Leishmania, a digenetic parasitic protozoan that causes a major infectious disease, quiescence has been demonstrated, but the molecular and metabolic features enabling its maintenance are unknown. Here, we quantified the transcriptome and metabolome of Leishmania promastigotes and amastigotes where quiescence was induced in vitro either, through drug pressure or by stationary phase. Quiescent cells have a global and coordinated reduction in overall transcription, with levels dropping to as low as 0.4% of those in proliferating cells. However, a subset of transcripts did not follow this trend and were relatively upregulated in quiescent populations, including those encoding membrane components, such as amastins and GP63, or processes like autophagy. The metabolome followed a similar trend of overall downregulation albeit to a lesser magnitude than the transcriptome. It is noteworthy that among the commonly upregulated metabolites were those involved in carbon sources as an alternative to glucose. This first integrated two omics layers afford novel insight into cell regulation and show commonly modulated features across stimuli and stages.

12.
Viruses ; 14(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36146659

RESUMO

This case report describes a 60-year-old female patient suffering from systemic sclerosis, for which she received immunomodulatory drugs. Her first SARS-CoV-2-positive nasopharyngeal sample was obtained in the emergency department, on 31 January 2022. Whole genome sequencing confirmed infection with Omicron BA.1.1. Her hospital stay was long and punctuated by many complications, including admission to the intensive care unit. At the beginning of April 2022, she started complaining of increased coughing, for which another SARS-CoV-2 RT-qPCR test was performed. The latter nasopharyngeal swab showed a strongly positive result. To support the theory of healthcare-associated reinfection, whole genome sequencing was performed and confirmed reinfection with Omicron BA.2. Since this patient was one of ten positive cases in this particular ward, a hospital outbreak investigation was performed. Whole genome sequencing data were available for five of these ten patients and showed a cluster of four patients with ≤2 small nucleotide polymorphisms difference.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Atenção à Saúde , Feminino , Humanos , Pessoa de Meia-Idade , Nucleotídeos , Reinfecção , SARS-CoV-2/genética
13.
mBio ; 13(1): e0326421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012338

RESUMO

The implementation of prospective drug resistance (DR) studies in the research-and-development (R&D) pipeline is a common practice for many infectious diseases but not for neglected tropical diseases (NTDs). Here, we explored and demonstrated the importance of this approach using as paradigms Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GlaxoSmithKline (GSK) "Leishbox" to treat VL. We experimentally selected resistance to TCMDC-143345 in vitro and characterized resistant parasites at the genomic and phenotypic levels. We found that it took more time to develop resistance to TCMDC-143345 than to other drugs in clinical use and that there was no cross-resistance to these drugs, suggesting a new and unique mechanism. By whole-genome sequencing, we found two mutations in the gene encoding the L. donovani dynamin-1-like protein (LdoDLP1) that were fixed at the highest drug pressure. Through phylogenetic analysis, we identified LdoDLP1 as a family member of the dynamin-related proteins, a group of proteins that impacts the shapes of biological membranes by mediating fusion and fission events, with a putative role in mitochondrial fission. We found that L. donovani lines genetically engineered to harbor the two identified LdoDLP1 mutations were resistant to TCMDC-143345 and displayed altered mitochondrial properties. By homology modeling, we showed how the two LdoDLP1 mutations may influence protein structure and function. Taken together, our data reveal a clear involvement of LdoDLP1 in the adaptation/reduced susceptibility of L. donovani to TCMDC-143345. IMPORTANCE Humans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively once it has already been established in clinical settings. We previously recommended to keep one step ahead in the host-pathogen arms race and implement prospective DR studies in the R&D pipeline, a common practice for many infectious diseases but not for NTDs. Here, using Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK Leishbox to treat VL, as paradigms, we experimentally selected resistance to the compound and proceeded to genomic and phenotypic characterization of DR parasites. The results gathered in the present study suggest a new DR mechanism involving the L. donovani dynamin-1-like protein (LdoDLP1) and demonstrate the practical relevance of prospective DR studies.


Assuntos
Antiprotozoários , Resistência a Medicamentos , Dinamina I , Leishmania donovani , Leishmaniose Visceral , Humanos , Antiprotozoários/imunologia , Dinamina I/genética , Dinamina I/imunologia , Genômica , Leishmania donovani/genética , Leishmania donovani/imunologia , Leishmania donovani/parasitologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Filogenia , Estudos Retrospectivos , Resistência a Medicamentos/genética , Resistência a Medicamentos/imunologia
14.
Sci Rep ; 10(1): 15043, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929126

RESUMO

Here, we report a pilot study paving the way for further single cell genomics studies in Leishmania. First, the performances of two commercially available kits for Whole Genome Amplification (WGA), PicoPLEX and RepliG were compared on small amounts of Leishmania donovani DNA, testing their ability to preserve specific genetic variations, including aneuploidy levels and SNPs. We show here that the choice of WGA method should be determined by the planned downstream genetic analysis, PicoPLEX and RepliG performing better for aneuploidy and SNP calling, respectively. This comparison allowed us to evaluate and optimize corresponding bio-informatic methods. As PicoPLEX was shown to be the preferred method for studying single cell aneuploidy, this method was applied in a second step, on single cells of L. braziliensis, which were sorted by fluorescence activated cell sorting (FACS). Even sequencing depth was achieved in 28 single cells, allowing accurate somy estimation. A dominant karyotype with three aneuploid chromosomes was observed in 25 cells, while two different minor karyotypes were observed in the other cells. Our method thus allowed the detection of aneuploidy mosaicism, and provides a solid basis which can be further refined to concur with higher-throughput single cell genomic methods.


Assuntos
Biologia Computacional/métodos , Genoma de Protozoário , Cariotipagem/métodos , Leishmania/genética , Análise de Célula Única/métodos , Aneuploidia , Citometria de Fluxo/métodos
15.
Elife ; 92020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32209228

RESUMO

Protozoan parasites of the Leishmania donovani complex - L. donovani and L. infantum - cause the fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study, with 151 cultured field isolates representing most of the geographical distribution. L. donovani isolates separated into five groups that largely coincide with geographical origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one globally-distributed group with little diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting different recombination histories. We characterise chromosome-specific patterns of aneuploidy and identified extensive structural variation, including known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested by geographically-focused studies, provides a resource of genomic variation for future work and sets the scene for a new understanding of the evolution and genetics of the Leishmania donovani complex.


Assuntos
Variação Genética , Genoma de Protozoário , Leishmania donovani/genética , Aneuploidia , Animais , Variações do Número de Cópias de DNA , Resistência a Medicamentos/genética , Evolução Molecular , Heterozigoto , Polimorfismo de Nucleotídeo Único , Seleção Genética
16.
BMC Evol Biol ; 9: 89, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19416516

RESUMO

BACKGROUND: The rate at which neutral (non-functional) bases undergo substitution is highly dependent on their location within a genome. However, it is not clear how fast these location-dependent rates change, or to what extent the substitution rate patterns are conserved between lineages. To address this question, which is critical not only for understanding the substitution process but also for evaluating phylogenetic footprinting algorithms, we examine ancestral repeats: a predominantly neutral dataset with a significantly higher genomic density than other datasets commonly used to study substitution rate variation. Using this repeat data, we measure the extent to which orthologous ancestral repeat sequences exhibit similar substitution patterns in separate mammalian lineages, allowing us to ascertain how well local substitution rates have been preserved across species. RESULTS: We calculated substitution rates for each ancestral repeat in each of three independent mammalian lineages (primate - from human/macaque alignments, rodent - from mouse/rat alignments, and laurasiatheria - from dog/cow alignments). We then measured the correlation of local substitution rates among these lineages. Overall we found the correlations between lineages to be statistically significant, but too weak to have much predictive power (r2 <5%). These correlations were found to be primarily driven by regional effects at the scale of several hundred kb or larger. A few repeat classes (e.g. 7SK, Charlie8, and MER121) also exhibited stronger conservation of rate patterns, likely due to the effect of repeat-specific purifying selection. These classes should be excluded when estimating local neutral substitution rates. CONCLUSION: Although local neutral substitution rates have some correlations among mammalian species, these correlations have little predictive power on the scale of individual repeats. This indicates that local substitution rates have changed significantly among the lineages we have studied, and are likely to have changed even more for more diverged lineages. The correlations that do persist are too weak to be responsible for many of the highly conserved elements found by phylogenetic footprinting algorithms, leading us to conclude that such elements must be conserved due to selective forces.


Assuntos
Análise Mutacional de DNA , Evolução Molecular , Genoma , Mamíferos/genética , Algoritmos , Animais , Sequência Conservada , Humanos , Camundongos , Modelos Genéticos , Filogenia , Alinhamento de Sequência
17.
Methods Mol Biol ; 1971: 69-94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980298

RESUMO

Next generation sequencing (NGS) technology transformed Leishmania genome studies and became an indispensable tool for Leishmania researchers. Recent Leishmania genomics analyses facilitated the discovery of various genetic diversities including single nucleotide polymorphisms (SNPs), copy number variations (CNVs), somy variations, and structural variations in detail and provided valuable insights into the complexity of the genome and gene regulation. Many aspects of Leishmania NGS analyses are similar to those of related pathogens like trypanosomes. However, the analyses of Leishmania genomes face a unique challenge because of the presence of frequent aneuploidy. This makes characterization and interpretation of read depth and somy a key part of Leishmania NGS analyses because read depth affects the accuracy of detection of all genetic variations. However, there are no general guidelines on how to explore and interpret the impact of aneuploidy, and this has made it difficult for biologists and bioinformaticians, especially for beginners, to perform their own analyses and interpret results across different analyses. In this guide we discuss a wide range of topics essential for Leishmania NGS analyses, ranging from how to set up a computational environment for genome analyses, to how to characterize genetic variations among Leishmania samples, and we will particularly focus on chromosomal copy number variation and its impact on genome analyses.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leishmania/genética , Polimorfismo de Nucleotídeo Único
18.
Sci Rep ; 9(1): 18951, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831818

RESUMO

Under stressful conditions some microorganisms adopt a quiescent stage characterized by a reversible non or slow proliferative condition that allows their survival. This adaptation was only recently discovered in Leishmania. We developed an in vitro model and a biosensor to track quiescence at population and single cell levels. The biosensor is a GFP reporter gene integrated within the 18S rDNA locus, which allows monitoring the expression of 18S rRNA (rGFP expression). We showed that rGFP expression decreased significantly and rapidly during the transition from extracellular promastigotes to intracellular amastigotes and that it was coupled in vitro with a decrease in replication as measured by BrdU incorporation. rGFP expression was useful to track the reversibility of quiescence in live cells and showed for the first time the heterogeneity of physiological stages among the population of amastigotes in which shallow and deep quiescent stages may coexist. We also validated the use of rGFP expression as a biosensor in animal models of latent infection. Our models and biosensor should allow further characterization of quiescence at metabolic and molecular level.


Assuntos
DNA de Protozoário , DNA Ribossômico , Loci Gênicos , Proteínas de Fluorescência Verde , Leishmania braziliensis , Leishmania mexicana , Microrganismos Geneticamente Modificados , Animais , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Leishmania braziliensis/citologia , Leishmania braziliensis/crescimento & desenvolvimento , Leishmania braziliensis/metabolismo , Leishmania mexicana/citologia , Leishmania mexicana/genética , Leishmania mexicana/metabolismo , Camundongos
19.
Sci Rep ; 9(1): 9485, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263131

RESUMO

Leishmania braziliensis and Leishmania panamensis are two species clinically and epidemiologically important, among others because of their relative resistance to first-line drugs (antimonials). The precise mechanism underlying the ability of these species to survive antimony treatment remains unknown. Therefore, elucidating the pathways mediating drug resistance is essential. We herein experimentally selected resistance to trivalent antimony (SbIII) in the reference strains of L. braziliensis (MHOM/BR75/M2904) and L. panamensis (MHOM/COL/81L13) and compared whole genome and transcriptome alterations in the culture promastigote stage. The results allowed us to identify differences in somy, copy number variations in some genes related to antimony resistance and large-scale copy number variations (deletions and duplications) in chromosomes with no somy changes. We found mainly in L. braziliensis, a direct relation between the chromosomal/local copy number variation and the gene expression. We identified differentially expressed genes in the resistant lines that are involved in antimony resistance, virulence, and vital biological processes in parasites. The results of this study may be useful for characterizing the genetic mechanisms of these Leishmania species under antimonial pressure, and for clarifying why the parasites are resistant to first-line drug treatments.


Assuntos
Antimônio/farmacologia , Cromossomos , Dosagem de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Genes de Protozoários , Leishmania braziliensis , Cromossomos/genética , Cromossomos/metabolismo , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Especificidade da Espécie
20.
Nat Commun ; 10(1): 3972, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481692

RESUMO

Genetic exchange enables parasites to rapidly transform disease phenotypes and exploit new host populations. Trypanosoma cruzi, the parasitic agent of Chagas disease and a public health concern throughout Latin America, has for decades been presumed to exchange genetic material rarely and without classic meiotic sex. We present compelling evidence from 45 genomes sequenced from southern Ecuador that T. cruzi in fact maintains truly sexual, panmictic groups that can occur alongside others that remain highly clonal after past hybridization events. These groups with divergent reproductive strategies appear genetically isolated despite possible co-occurrence in vectors and hosts. We propose biological explanations for the fine-scale disconnectivity we observe and discuss the epidemiological consequences of flexible reproductive modes. Our study reinvigorates the hunt for the site of genetic exchange in the T. cruzi life cycle, provides tools to define the genetic determinants of parasite virulence, and reforms longstanding theory on clonality in trypanosomatid parasites.


Assuntos
Genoma de Protozoário , Meiose , Trypanosoma cruzi/genética , Animais , Doença de Chagas/parasitologia , Quirópteros/parasitologia , Equador , Variação Genética , Genética Populacional , Recombinação Genética , Reprodução/genética , Roedores/parasitologia , Análise de Sequência de DNA , Triatominae/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA