Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63838, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248034

RESUMO

Hypertrophic cardiomyopathy (HCM) and restrictive cardiomyopathy (RCM) have significant phenotypic overlap and a similar genetic background, both caused mainly by variants in sarcomeric genes. HCM is the most common cardiomyopathy, while RCM is a rare and often underdiagnosed heart condition, with a poor prognosis. This study focuses on a large family with four infants diagnosed with fatal RCM associated with biventricular hypertrophy. Affected infants were found to be homozygous for NM_003280.3(TNNC1):c.23C>T(p.Ala8Val) variant. Interestingly, this variant resulted in a low penetrance and mild form of hypertrophic cardiomyopathy (HCM) in relatives carrying a single copy of the variant. Overall, this study underscores the complex nature of genetic inheritance in cardiomyopathies and the wide range of clinical presentations they can exhibit. This emphasizes the vital role of genetic testing in providing essential insights crucial for diagnosis, prognosis, early intervention, and the development of potential treatment strategies.

2.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511593

RESUMO

The data on tumor molecular profiling of European patients with prostate cancer is limited. Our aim was to evaluate the prevalence and prognostic and predictive values of gene alterations in unselected patients with prostate cancer. The presence of gene alterations was assessed in patients with histologically confirmed prostate cancer using the ForeSENTIA® Prostate panel (Medicover Genetics), targeting 36 clinically relevant genes and microsatellite instability testing. The primary endpoint was the prevalence of gene alterations in homologous recombination repair (HRR) genes. Overall, 196 patients with prostate cancer were evaluated (median age 72.2 years, metastatic disease in 141 (71.9%) patients). Gene alterations were identified in 120 (61%) patients, while alteration in HRR genes were identified in 34 (17.3%) patients. The most commonly mutated HRR genes were ATM (17, 8.7%), BRCA2 (9, 4.6%) and BRCA1 (4, 2%). The presence of HRR gene alterations was not associated with advanced stage (p = 0.21), age at diagnosis (p = 0.28), Gleason score (p = 0.17) or overall survival (HR 0.72; 95% CI: 0.41-1.26; p = 0.251). We identified clinically relevant somatic gene alterations in European patients with prostate cancer. These molecular alterations have prognostic significance and therapeutic implications and/or may trigger genetic testing in selected patients. In the era of precision medicine, prospective research on the predictive role of these alterations for innovative treatments or their combinations is warranted.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Idoso , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Testes Genéticos
3.
Clin Chem ; 62(6): 848-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27117469

RESUMO

BACKGROUND: There is great need for the development of highly accurate cost effective technologies that could facilitate the widespread adoption of noninvasive prenatal testing (NIPT). METHODS: We developed an assay based on the targeted analysis of cell-free DNA for the detection of fetal aneuploidies of chromosomes 21, 18, and 13. This method enabled the capture and analysis of selected genomic regions of interest. An advanced fetal fraction estimation and aneuploidy determination algorithm was also developed. This assay allowed for accurate counting and assessment of chromosomal regions of interest. The analytical performance of the assay was evaluated in a blind study of 631 samples derived from pregnancies of at least 10 weeks of gestation that had also undergone invasive testing. RESULTS: Our blind study exhibited 100% diagnostic sensitivity and specificity and correctly classified 52/52 (95% CI, 93.2%-100%) cases of trisomy 21, 16/16 (95% CI, 79.4%-100%) cases of trisomy 18, 5/5 (95% CI, 47.8%-100%) cases of trisomy 13, and 538/538 (95% CI, 99.3%-100%) normal cases. The test also correctly identified fetal sex in all cases (95% CI, 99.4%-100%). One sample failed prespecified assay quality control criteria, and 19 samples were nonreportable because of low fetal fraction. CONCLUSIONS: The extent to which free fetal DNA testing can be applied as a universal screening tool for trisomy 21, 18, and 13 depends mainly on assay accuracy and cost. Cell-free DNA analysis of targeted genomic regions in maternal plasma enables accurate and cost-effective noninvasive fetal aneuploidy detection, which is critical for widespread adoption of NIPT.


Assuntos
Transtornos Cromossômicos/genética , DNA/genética , Síndrome de Down/genética , Feto/metabolismo , Diagnóstico Pré-Natal , Análise de Sequência de DNA , Análise para Determinação do Sexo/métodos , Trissomia/genética , Transtornos Cromossômicos/sangue , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 18/genética , DNA/sangue , Síndrome de Down/sangue , Feminino , Humanos , Gravidez , Síndrome da Trissomia do Cromossomo 13 , Síndrome da Trissomía do Cromossomo 18
4.
Genet Res (Camb) ; 98: e15, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27834155

RESUMO

DNA methylation is an epigenetic marker that has been shown to vary significantly across different tissues. Taking advantage of the methylation differences between placenta-derived cell-free DNA and maternal blood, several groups employed different approaches for the discovery of fetal-specific biomarkers. The aim of this study was to analyse whole-genome fetal and maternal methylomes in order to identify and confirm the presence of differentially methylated regions (DMRs). We have initially utilized methylated DNA immunoprecipitation (MeDIP) and next-generation sequencing (NGS) to identify genome-wide DMRs between chorionic villus sampling (CVS) and female non-pregnant plasma (PL) and peripheral blood (WBF) samples. Next, using specific criteria, 331 fetal-specific DMRs were selected and confirmed in eight CVS, eight WBF and eight PL samples by combining MeDIP and in-solution targeted enrichment followed by NGS. Results showed higher enrichment in CVS samples as compared to both WBF and PL samples, confirming the distinct methylation levels between fetal and maternal DNA for the selected DMRs. We have successfully implemented a novel approach for the discovery and confirmation of a significant number of fetal-specific DMRs by combining for the first time MeDIP and in-solution targeted enrichment followed by NGS. The implementation of this double-enrichment approach is highly efficient and enables the detailed analysis of multiple DMRs by targeted NGS. Also, this is, to our knowledge, the first reported application of MeDIP on plasma samples, which leverages the implementation of our enrichment methodology in the detection of fetal abnormalities in maternal plasma.


Assuntos
Biomarcadores/análise , Metilação de DNA , DNA/genética , Doenças Fetais/diagnóstico , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Complicações na Gravidez/diagnóstico , Amostra da Vilosidade Coriônica , DNA/sangue , Epigênese Genética , Feminino , Doenças Fetais/sangue , Doenças Fetais/genética , Feto/metabolismo , Humanos , Imunoprecipitação , Testes para Triagem do Soro Materno , Placenta/metabolismo , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Primeiro Trimestre da Gravidez
5.
Genes (Basel) ; 15(3)2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540378

RESUMO

Inherited cardiomyopathies represent a highly heterogeneous group of cardiac diseases. DNA variants in genes expressed in cardiomyocytes cause a diverse spectrum of cardiomyopathies, ultimately leading to heart failure, arrythmias, and sudden cardiac death. We applied massive parallel DNA sequencing using a 72-gene panel for studying inherited cardiomyopathies. We report on variants in 25 families, where pathogenicity was predicted by different computational approaches, databases, and an in-house filtering analysis. All variants were validated using Sanger sequencing. Familial segregation was tested when possible. We identified 41 different variants in 26 genes. Analytically, we identified fifteen variants previously reported in the Human Gene Mutation Database: twelve mentioned as disease-causing mutations (DM) and three as probable disease-causing mutations (DM?). Additionally, we identified 26 novel variants. We classified the forty-one variants as follows: twenty-eight (68.3%) as variants of uncertain significance, eight (19.5%) as likely pathogenic, and five (12.2%) as pathogenic. We genetically characterized families with a cardiac phenotype. The genetic heterogeneity and the multiplicity of candidate variants are making a definite molecular diagnosis challenging, especially when there is a suspicion of incomplete penetrance or digenic-oligogenic inheritance. This is the first systematic study of inherited cardiac conditions in Cyprus, enabling us to develop a genetic baseline and precision cardiology.


Assuntos
Cardiomiopatias , Herança Multifatorial , Humanos , Chipre/epidemiologia , Cardiomiopatias/genética , Mutação , Análise de Sequência de DNA
6.
Hum Mol Genet ; 20(10): 1925-36, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21349920

RESUMO

The recently described DNA replication-based mechanisms of fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR) were previously shown to catalyze complex exonic, genic and genomic rearrangements. By analyzing a large number of isochromosomes of the long arm of chromosome X (i(Xq)), using whole-genome tiling path array comparative genomic hybridization (aCGH), ultra-high resolution targeted aCGH and sequencing, we provide evidence that the FoSTeS and MMBIR mechanisms can generate large-scale gross chromosomal rearrangements leading to the deletion and duplication of entire chromosome arms, thus suggesting an important role for DNA replication-based mechanisms in both the development of genomic disorders and cancer. Furthermore, we elucidate the mechanisms of dicentric i(Xq) (idic(Xq)) formation and show that most idic(Xq) chromosomes result from non-allelic homologous recombination between palindromic low copy repeats and highly homologous palindromic LINE elements. We also show that non-recurrent-breakpoint idic(Xq) chromosomes have microhomology-associated breakpoint junctions and are likely catalyzed by microhomology-mediated replication-dependent recombination mechanisms such as FoSTeS and MMBIR. Finally, we stress the role of the proximal Xp region as a chromosomal rearrangement hotspot.


Assuntos
Cromossomos Humanos X/genética , Replicação do DNA/genética , Isocromossomos/genética , Sequência de Bases , Quebra Cromossômica , Hibridização Genômica Comparativa , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Polimorfismo Genético , Recombinação Genética , Alinhamento de Sequência , Sequências de Repetição em Tandem/genética
7.
Front Cardiovasc Med ; 10: 1171226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547253

RESUMO

Mitral annulus disjunction (MAD) is defined as a systolic displacement between the ventricular myocardium and the posterior mitral annulus supporting the posterior mitral leaflet. This structural abnormality is associated with the loss of mechanical annular function manifested as an abnormal systolic excursion of the leaflet hinge point into the left atrium but with maintained electrical function, separating the left atrium and ventricle electrophysiologically. The mitro-aortic fibrous continuity limits MAD anteriorly, between the aortic cusps and the anterior leaflet of the mitral valve. Consequently, MAD has been observed only at the insertion of the posterior leaflet. It can extend preferentially at the central posterior scallop. The first diagnostic modality aiding the diagnosis is transthoracic echocardiography (TTE), although in some cases adjunctive cardiac imaging modality might be suggested. MAD carries a strong association with malignant ventricular arrhythmogenesis and a profound predisposition for sudden cardiac death (SCD). In this context, a thorough investigation of this morphological and functional abnormality is vital in estimating the risk assessment and stratification for optimal management and elimination of the risk of the patient for SCD. Based on the current scientific data and literature, we will discuss the diagnosis, clinical implications, risk stratification, and therapeutic management of MAD.

8.
Oncol Lett ; 25(1): 38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36589665

RESUMO

Gliomas are the most common malignant primary brain tumors characterized by poor prognosis. The genotyping of tumors using next generation sequencing (NGS) platforms enables the identification of genetic alterations that constitute diagnostic, prognostic and predictive biomarkers. The present study investigated the molecular profile of 32 tumor samples from 32 patients with high-grade gliomas by implementing a broad 80-gene targeted NGS panel while reporting their clinicopathological characteristics and outcomes. Subsequently, 14 of 32 tumor specimens were also genotyped using a 55-gene NGS panel to validate the diagnostic accuracy and clinical utility of the extended panel. The median follow-up was 19.2 months. In total, 129 genetic alterations including 33 structural variants were identified in 38 distinct genes. Among 96 variants (single nucleotide variants and insertions and deletions), 38 were pathogenic and 58 variants of unknown clinical significance. TP53 was the most frequently mutated gene, followed by PTEN and IDH1 genes. Glioma patients with IDH1 mutant tumors were younger and had significantly longer overall survival compared to patients with wild-type IDH1 tumors. Similarly, tumors with TP53 mutations were more likely observed in younger patients with glioma. Subsequently, a comparison of mutational profiles of samples analyzed by both panels was also performed. Implementation of the comprehensive pan-cancer and the MOL panels resulted in the identification of 37 and 15 variants, respectively. Of those, 13 were common. Comprehensive pan-cancer panel identified 24 additional variants, 22 of which were located in regions that were not targeted by the MOL panel. By contrast, the MOL panel identified two additional variants. Overall, the present study demonstrated that using an extended tumor profile assay instead of a glioma-specific tumor profile panel identified additional genetic changes that may be taken into consideration as potential therapeutic targets for glioma diagnosis and molecular classification.

9.
Viruses ; 15(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37766339

RESUMO

Commencing in December 2019 with the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three years of the coronavirus disease 2019 (COVID-19) pandemic have transpired. The virus has consistently demonstrated a tendency for evolutionary adaptation, resulting in mutations that impact both immune evasion and transmissibility. This ongoing process has led to successive waves of infections. This study offers a comprehensive assessment spanning genetic, phylogenetic, phylodynamic, and phylogeographic dimensions, focused on the trajectory of the SARS-CoV-2 epidemic in Cyprus. Based on a dataset comprising 4700 viral genomic sequences obtained from affected individuals between October 2021 and October 2022, our analysis is presented. Over this timeframe, a total of 167 distinct lineages and sublineages emerged, including variants such as Delta and Omicron (1, 2, and 5). Notably, during the fifth wave of infections, Omicron subvariants 1 and 2 gained prominence, followed by the ascendancy of Omicron 5 in the subsequent sixth wave. Additionally, during the fifth wave (December 2021-January 2022), a unique set of Delta sequences with genetic mutations associated with Omicron variant 1, dubbed "Deltacron", was identified. The emergence of this phenomenon initially evoked skepticism, characterized by concerns primarily centered around contamination or coinfection as plausible etiological contributors. These hypotheses were predominantly disseminated through unsubstantiated assertions within the realms of social and mass media, lacking concurrent scientific evidence to validate their claims. Nevertheless, the exhaustive molecular analyses presented in this study have demonstrated that such occurrences would likely lead to a frameshift mutation-a genetic aberration conspicuously absent in our provided sequences. This substantiates the accuracy of our initial assertion while refuting contamination or coinfection as potential etiologies. Comparable observations on a global scale dispelled doubt, eventually leading to the recognition of Delta-Omicron variants by the scientific community and their subsequent monitoring by the World Health Organization (WHO). As our investigation delved deeper into the intricate dynamics of the SARS-CoV-2 epidemic in Cyprus, a discernible pattern emerged, highlighting the major role of international connections in shaping the virus's local trajectory. Notably, the United States and the United Kingdom were the central conduits governing the entry and exit of the virus to and from Cyprus. Moreover, notable migratory routes included nations such as Greece, South Korea, France, Germany, Brazil, Spain, Australia, Denmark, Sweden, and Italy. These empirical findings underscore that the spread of SARS-CoV-2 within Cyprus was markedly influenced by the influx of new, highly transmissible variants, triggering successive waves of infection. This investigation elucidates the emergence of new waves of infection subsequent to the advent of highly contagious and transmissible viral variants, notably characterized by an abundance of mutations localized within the spike protein. Notably, this discovery decisively contradicts the hitherto hypothesis of seasonal fluctuations in the virus's epidemiological dynamics. This study emphasizes the importance of meticulously examining molecular genetics alongside virus migration patterns within a specific region. Past experiences also emphasize the substantial evolutionary potential of viruses such as SARS-CoV-2, underscoring the need for sustained vigilance. However, as the pandemic's dynamics continue to evolve, a balanced approach between caution and resilience becomes paramount. This ethos encourages an approach founded on informed prudence and self-preservation, guided by public health authorities, rather than enduring apprehension. Such an approach empowers societies to adapt and progress, fostering a poised confidence rooted in well-founded adaptation.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , Chipre/epidemiologia , Filogenia , COVID-19/epidemiologia , Genômica , Pandemias
10.
Front Oncol ; 12: 855463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402285

RESUMO

Introduction: The mechanisms underlying high drug resistance and relapse rates after multi-modal treatment in patients with colorectal cancer (CRC) and liver metastasis (LM) remain poorly understood. Objective: We evaluate the potential translational implications of intra-patient heterogeneity (IPH) comprising primary and matched metastatic intratumor heterogeneity (ITH) coupled with circulating tumor DNA (ctDNA) variability. Methods: A total of 122 multi-regional tumor and perioperative liquid biopsies from 18 patients were analyzed via targeted next-generation sequencing (NGS). Results: The proportion of patients with ITH were 53% and 56% in primary CRC and LM respectively, while 35% of patients harbored de novo mutations in LM indicating spatiotemporal tumor evolution and the necessity of multiregional analysis. Among the 56% of patients with alterations in liquid biopsies, de novo mutations in cfDNA were identified in 25% of patients, which were undetectable in both CRC and LM. All 17 patients with driver alterations harbored mutations targetable by molecularly targeted drugs, either approved or currently under evaluation. Conclusion: Our proof-of-concept prospective study provides initial evidence on potential clinical superiority of IPH and warrants the conduction of precision oncology trials to evaluate the clinical utility of I PH-driven matched therapy.

11.
Viruses ; 15(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36680148

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 resulted in the coronavirus disease 2019 (COVID-19) pandemic, which has had devastating repercussions for public health. Over the course of this pandemic, the virus has continuously been evolving, resulting in new, more infectious variants that have frequently led to surges of new SARS-CoV-2 infections. In the present study, we performed detailed genetic, phylogenetic, phylodynamic and phylogeographic analyses to examine the SARS-CoV-2 epidemic in Cyprus using 2352 SARS-CoV-2 sequences from infected individuals in Cyprus during November 2020 to October 2021. During this period, a total of 61 different lineages and sublineages were identified, with most falling into three groups: B.1.258 & sublineages, Alpha (B.1.1.7 & Q. sublineages), and Delta (B.1.617.2 & AY. sublineages), each encompassing a set of S gene mutations that primarily confer increased transmissibility as well as immune evasion. Specifically, these lineages were coupled with surges of new infections in Cyprus, resulting in the following: the second wave of SARS-CoV-2 infections in Cyprus, comprising B.1.258 & sublineages, during late autumn 2020/beginning of winter 2021; the third wave, comprising Alpha (B.1.1.7 & Q. sublineages), during spring 2021; and the fourth wave, comprising Delta (B.1.617.2 & AY. sublineages) during summer 2021. Additionally, it was identified that these lineages were primarily imported from and exported to the UK, Greece, and Sweden; many other migration links were also identified, including Switzerland, Denmark, Russia, and Germany. Taken together, the results of this study indicate that the SARS-CoV-2 epidemic in Cyprus was characterized by successive introduction of new lineages from a plethora of countries, resulting in the generation of waves of infection. Overall, this study highlights the importance of investigating the spatiotemporal evolution of the SARS-CoV-2 epidemic in the context of Cyprus, as well as the impact of protective measures placed to mitigate transmission of the virus, providing necessary information to safeguard public health.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Chipre/epidemiologia , Filogenia , COVID-19/epidemiologia , Genômica , Pandemias
12.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207490

RESUMO

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in an extraordinary global public health crisis. In early 2020, Cyprus, among other European countries, was affected by the SARS-CoV-2 epidemic and adopted lockdown measures in March 2020 to limit the initial outbreak on the island. In this study, we performed a comprehensive retrospective molecular epidemiological analysis (genetic, phylogenetic, phylodynamic and phylogeographic analyses) of SARS-CoV-2 isolates in Cyprus from April 2020 to January 2021, covering the first ten months of the SARS-CoV-2 infection epidemic on the island. The primary aim of this study was to assess the transmissibility of SARS-CoV-2 lineages in Cyprus. Whole SARS-CoV-2 genomic sequences were generated from 596 clinical samples (nasopharyngeal swabs) obtained from community-based diagnostic testing centers and hospitalized patients. The phylogenetic analyses revealed a total of 34 different lineages in Cyprus, with B.1.258, B.1.1.29, B.1.177, B.1.2, B.1 and B.1.1.7 (designated a Variant of Concern 202012/01, VOC) being the most prevalent lineages on the island during the study period. Phylodynamic analysis showed a highly dynamic epidemic of SARS-CoV-2 infection, with three consecutive surges characterized by specific lineages (B.1.1.29 from April to June 2020; B.1.258 from September 2020 to January 2021; and B.1.1.7 from December 2020 to January 2021). Genetic analysis of whole SARS-CoV-2 genomic sequences of the aforementioned lineages revealed the presence of mutations within the S protein (L18F, ΔH69/V70, S898F, ΔY144, S162G, A222V, N439K, N501Y, A570D, D614G, P681H, S982A and D1118H) that confer higher transmissibility and/or antibody escape (immune evasion) upon the virus. Phylogeographic analysis indicated that the majority of imports and exports were to and from the United Kingdom (UK), although many other regions/countries were identified (southeastern Asia, southern Europe, eastern Europe, Germany, Italy, Brazil, Chile, the USA, Denmark, the Czech Republic, Slovenia, Finland, Switzerland and Pakistan). Taken together, these findings demonstrate that the SARS-CoV-2 infection epidemic in Cyprus is being maintained by a continuous influx of lineages from many countries, resulting in the establishment of an ever-evolving and polyphyletic virus on the island.


Assuntos
COVID-19/epidemiologia , Genoma Viral , Filogenia , SARS-CoV-2/genética , COVID-19/transmissão , Controle de Doenças Transmissíveis , Chipre/epidemiologia , Evolução Molecular , Humanos , Mutação , Nasofaringe/virologia , Filogeografia , RNA Viral/genética , Estudos Retrospectivos , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação
13.
Cancers (Basel) ; 13(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429865

RESUMO

Our aim was to determine the prevalence, prognostic and predictive role of germline pathogenic/likely pathogenic variants (P/LPVs) in cancer predisposing genes in patients with pancreatic ductal adenocarcinoma (PDAC). Germline testing of 62 cancer susceptibility genes was performed on unselected patients diagnosed from 02/2003 to 01/2020 with PDAC, treated at Hellenic Cooperative Oncology Group (HeCOG)-affiliated Centers. The main endpoints were prevalence of P/LPVs and overall survival (OS). P/LPVs in PDAC-associated and homologous recombination repair (HRR) genes were identified in 22 (4.0%) and 42 (7.7%) of 549 patients, respectively. P/LPVs were identified in 16 genes, including ATM (11, 2.0%) and BRCA2 (6, 1.1%), while 19 patients (3.5%) were heterozygotes for MUTYH P/LPVs and 9 (1.6%) carried the low-risk allele, CHEK2 p.(Ile157Thr). Patients carrying P/LPVs had improved OS compared to non-carriers (22.6 vs. 13.9 months, p = 0.006). In multivariate analysis, there was a trend for improved OS in P/LPV carriers (p = 0.063). The interaction term between platinum exposure and mutational status of HRR genes was not significant (p-value = 0.35). A significant proportion of patients with PDAC carries clinically relevant germline P/LPVs, irrespectively of age, family history or disease stage. The predictive role of these P/LPVs has yet to be defined. ClinicalTrials.gov Identifier: NCT03982446.

14.
Am J Med Genet A ; 152A(6): 1515-22, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20503328

RESUMO

We report on a 2-year-old boy with intellectual disabilities, distinctive facies, hypotonia, cardiac, and renal malformations. During his infancy he had recurrent episodes of apnea, cyanosis, and bradycardia. Chromosomal analysis showed a de novo apparently balanced translocation 46,XY,t(9;15)(q31;q26)dn. The use of array-comparative genomic hybridization (CGH) however, revealed the presence of additional cryptic complex chromosomal rearrangements involving a approximately 5-5.8 Mb distal duplication on chromosome 9 (9q34.1 --> 9q34.3), and deletions on three separate regions of chromosome 15 adding to approximately 8.1-12.2 Mb (15q21.2 --> 15q21.3, 15q22.31 --> 15q23, 15q25.1 --> 15q25.2). During confirmation with fluorescence in situ hybridization (FISH) an inversion was unexpectedly revealed on chromosome 15 (15q21.1 --> 15q21.2). To our knowledge this is the first patient reported whose phenotype is due to partial trisomy 9q, and complex interstitial deletions of 15q, not involving the Prader-Willi/Angelman region and encompassing the critical region 15q21q25. We provide correlation between the clinical findings of our patient and the phenotype of the 9q34 duplication syndrome, the 15q21, and the 15q25 deletion syndromes.


Assuntos
Anormalidades Múltiplas/diagnóstico , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 9/genética , Deficiência Intelectual/diagnóstico , Transtornos Psicomotores/diagnóstico , Translocação Genética , Anormalidades Múltiplas/genética , Pré-Escolar , Hibridização Genômica Comparativa , Fácies , Genótipo , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/genética , Masculino , Fenótipo , Transtornos Psicomotores/genética , Síndrome
15.
Oxf Med Case Reports ; 2020(6): omaa036, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32626581

RESUMO

A 70-year-old woman with known history of hypertension presented because of a syncopal episode during dinner at a wedding party, followed by chest pain. On physical examination a systolic murmur was noted, and her electrocardiogram showed ST segment elevation in anterior leads. She had elevated troponin levels while echocardiography showed a hypertrophic interventricular septum with dyskinetic apex and left ventricular outflow (LVOT) obstruction. Emergency coronary angiography excluded obstructive coronary artery disease and confirmed the presence of LVOT obstruction with a gradient of 90 mm Hg. A left ventriculography showed hypercontractility of the basal and mid segments with apical wall dyskinesia indicating Takotsubo cardiomyopathy. Patient was discharged after 6 days of hospitalization with normalization of left ventricular function and regression of the LVOT obstruction. This is an interesting case of Takotsubo cardiomyopathy complicated with severe LVOT obstruction in a patient with hypertensive heart disease and a sigmoid septum hypertrophy.

16.
Mol Genet Genomic Med ; 8(2): e1094, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821748

RESUMO

BACKGROUND: Non-invasive prenatal testing (NIPT) for fetal aneuploidies has rapidly been incorporated into clinical practice. Current NGS-based methods can reliably detect fetal aneuploidies non-invasively with fetal fraction of at least 4%. Inaccurate fetal fraction assessment can compromise the accuracy of the test as affected samples with low fetal fraction have an increased risk for misdiagnosis. Using a novel set of fetal-specific differentially methylated regions (DMRs) and methylation sensitive restriction digestion (MSRD), we developed a multiplex ddPCR assay for accurate detection of fetal fraction in maternal plasma. METHODS: We initially performed MSRD followed by methylation DNA immunoprecipitation (MeDIP) and NGS on fetal and non-pregnant female tissues to identify fetal-specific DMRs. DMRs with the highest methylation difference between the two tissues were selected for fetal fraction estimation employing MSRD and multiplex ddPCR. Chromosome Y multiplex ddPCR assay (YMM) was used as a reference standard, to develop our fetal fraction estimation model in male pregnancy samples. Additional 123 samples were tested to examine whether the model is sex dependent and/or ploidy dependent. RESULTS: In all, 93 DMRs were identified of which seven were selected for fetal fraction estimation. Statistical analysis resulted in the final model which included four DMRs (FFMM). High correlation with YMM-based fetal fractions was observed using 85 male pregnancies (r = 0.86 95% CI: 0.80-0.91). The model was confirmed using an independent set of 53 male pregnancies. CONCLUSION: By employing a set of well-characterized DMRs, we developed a SNP-, sex- and ploidy-independent methylation-based multiplex ddPCR assay for accurate fetal fraction estimation.


Assuntos
Aneuploidia , Metilação de DNA , Reação em Cadeia da Polimerase Multiplex/métodos , Teste Pré-Natal não Invasivo/métodos , Cromossomos Humanos Y/genética , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex/normas , Teste Pré-Natal não Invasivo/normas , Gravidez , Sensibilidade e Especificidade
17.
Resuscitation ; 148: 218-226, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027980

RESUMO

BACKGROUND: The epidemiology and outcome after out-of-hospital cardiac arrest (OHCA) varies across Europe. Following on from EuReCa ONE, the aim of this study was to further explore the incidence of and outcomes from OHCA in Europe and to improve understanding of the role of the bystander. METHODS: This prospective, multicentre study involved the collection of registry-based data over a three-month period (1st October 2017 to 31st December 2017). The core study dataset complied with the Utstein-style. Primary outcomes were return of spontaneous circulation (ROSC) and survival to hospital admission. Secondary outcome was survival to hospital discharge. RESULTS: All 28 countries provided data, covering a total population of 178,879,118. A total of 37,054 OHCA were confirmed, with CPR being started in 25,171 cases. The bystander cardiopulmonary resuscitation (CPR) rate ranged from 13% to 82% between countries (average: 58%). In one third of cases (33%) ROSC was achieved and 8% of patients were discharged from hospital alive. Survival to hospital discharge was higher in patients when a bystander performed CPR with ventilations, compared to compression-only CPR (14% vs. 8% respectively). CONCLUSION: In addition to increasing our understanding of the role of bystander CPR within Europe, EuReCa TWO has confirmed large variation in OHCA incidence, characteristics and outcome, and highlighted the extent to which OHCA is a public health burden across Europe. Unexplained variation remains and the EuReCa network has a continuing role to play in improving the quality management of resuscitation.


Assuntos
Reanimação Cardiopulmonar , Serviços Médicos de Emergência , Parada Cardíaca Extra-Hospitalar , Europa (Continente)/epidemiologia , Humanos , Parada Cardíaca Extra-Hospitalar/epidemiologia , Parada Cardíaca Extra-Hospitalar/terapia , Estudos Prospectivos , Sistema de Registros
18.
Rheumatol Int ; 29(6): 703-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18941753

RESUMO

Neurological manifestations may complicate Takayasu arteritis (TA) but seizures are rare. A 40-year-old man with TA presented with recurrent episodes of epileptic seizures. Episodes consisted of a brief period of unresponsiveness followed by sudden falling, tonic stiffening and limb jerking. A postictal period with drowsiness, urine incontinence and a temporal loss of memory was also present. A carotid and intracranial duplex ultrasound revealed a reverse flow within the left vertebral artery indicating the presence of subclavian stealing syndrome while extracranial MRA suggested some stenosis at the origin of the left common carotid artery. The EEG was consistent with epilepsy. Neurological manifestations are secondary to ischemia caused by decreased blood flow in the involved carotid and vertebral arteries. Antiepileptic treatment proved effective and may be considered as a reasonable first approach. The stenotic lesions can be managed successfully with angioplasty but these procedures are associated with a high failure rate and may not be needed.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Epilepsia/complicações , Síndrome do Roubo Subclávio/diagnóstico por imagem , Arterite de Takayasu/diagnóstico por imagem , Artéria Vertebral/diagnóstico por imagem , Adulto , Anticonvulsivantes/uso terapêutico , Artéria Carótida Primitiva/diagnóstico por imagem , Seguimentos , Humanos , Angiografia por Ressonância Magnética/efeitos adversos , Masculino , Síndrome do Roubo Subclávio/etiologia , Fatores de Tempo , Resultado do Tratamento , Ultrassonografia Doppler Dupla/efeitos adversos , Ultrassonografia Doppler Transcraniana/efeitos adversos
19.
Mol Cytogenet ; 12: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338126

RESUMO

INTRODUCTION: Non-Invasive Prenatal Testing (NIPT) for fetal aneuploidies using cell-free DNA (cfDNA) has been widely adopted in clinical practice due to its improved accuracy. A number of NIPT tests have been developed and validated. The purpose of this study is to evaluate the performance of the Veracity NIPT test for sex chromosome aneuploidy (SCA) detection in singleton pregnancies, autosomal aneuploidy detection in twin pregnancies and evaluation of Veracity clinical performance under routine NIPT conditions in a diverse cohort. METHODS: Blinded retrospective study in singleton pregnancies (n = 305); blinded retrospective and prospective study in twin pregnancies (n = 306) and prospective evaluation of clinical performance in singleton and twin pregnancies (n = 10564). RESULTS: Validation study results for the detection of SCAs in singleton pregnancies exhibited 100% sensitivity and specificity and correctly classified 7 (45,X), 4 (47,XXY), 2 (47,XXX) and 1 (47,XYY) cases. Validation study results for autosomal aneuploidy detection in twin pregnancies exhibited 100% sensitivity and specificity and correctly classified 3 trisomy 21, 1 trisomy 18 and 1 trisomy 13 samples. Clinical performance evaluation of Veracity was performed in 10564 pregnancies with median gestational age of 13 weeks, median maternal age 35 years and median gestational weight of 64 kg. Based on confirmation feedback the PPV for trisomies 21, 18 and 13 was estimated at 100% (95% CI, 92-100%), 100% (95% CI, 69-100%) and 71% (95% CI, 29-96%), respectively. Estimated PPV for Monosomy X was 57% (95%CI, 18-90%), while the NPV for SCA detection was estimated at 100% (95% CI, 99.94-100%). CONCLUSION: Veracity NIPT test is based on a very powerful, highly accurate methodology that can be safely applied in the clinical setting.

20.
Mol Cytogenet ; 12: 48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31832098

RESUMO

BACKGROUND: Non-invasive prenatal testing (NIPT) has been widely adopted for the detection of fetal aneuploidies and microdeletion syndromes, nevertheless, limited clinical utilization has been reported for the non-invasive prenatal screening of monogenic diseases. In this study, we present the development and validation of a single comprehensive NIPT for prenatal screening of chromosomal aneuploidies, microdeletions and 50 autosomal recessive disorders associated with severe or moderate clinical phenotype. RESULTS: We employed a targeted capture enrichment technology powered by custom TArget Capture Sequences (TACS) and multi-engine bioinformatics analysis pipeline to develop and validate a novel NIPT test. This test was validated using 2033 cell-fee DNA (cfDNA) samples from maternal plasma of pregnant women referred for NIPT and paternal genomic DNA. Additionally, 200 amniotic fluid and CVS samples were used for validation purposes. All NIPT samples were correctly classified exhibiting 100% sensitivity (CI 89.7-100%) and 100% specificity (CI 99.8-100%) for chromosomal aneuploidies and microdeletions. Furthermore, 613 targeted causative mutations, of which 87 were unique, corresponding to 21 monogenic diseases, were identified. For the validation of the assay for prenatal diagnosis purposes, all aneuploidies, microdeletions and point mutations were correctly detected in all 200 amniotic fluid and CVS samples. CONCLUSIONS: We present a NIPT for aneuploidies, microdeletions, and monogenic disorders. To our knowledge this is the first time that such a comprehensive NIPT is available for clinical implementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA