Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 183: 27-41, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37603971

RESUMO

Peroxisome proliferator-activated receptor (PPAR) δ is a major transcriptional regulator of cardiac energy metabolism with pleiotropic properties, including anti-inflammatory, anti-oxidative and cardioprotective action. In this study, we sought to investigate whether pharmacological activation of PPARδ via intraperitoneal administration of the selective ligand GW0742 could ameliorate heart failure and mitochondrial dysfunction that have been previously reported in a characterized genetic model of heart failure, the desmin null mice (Des-/-). Our studies demonstrate that treatment of Des-/- mice with the PPARδ agonist attenuated cardiac inflammation, fibrosis and cardiac remodeling. In addition, PPARδ activation alleviated oxidative stress in the failing myocardium as evidenced by decreased ROS levels. Importantly, PPARδ activation stimulated mitochondrial biogenesis, prevented mitochondrial and sarcoplasmic reticulum vacuolar degeneration and improved the mitochondrial intracellular distribution. Finally, PPARδ activation alleviated the mitochondrial respiratory dysfunction, prevented energy depletion and alleviated excessive autophagy and mitophagy in Des-/- hearts. Nevertheless, improvement of all these parameters did not suffice to overcome the significant structural deficiencies that desmin deletion incurs in cardiomyocytes and cardiac function did not improve significantly. In conclusion, pharmacological PPARδ activation in Des-/- hearts exerts protective effects during myocardial degeneration and heart failure by preserving the function and quality of the mitochondrial network. These findings implicate PPARδ agonists as a supplemental constituent of heart failure medications.

2.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38671853

RESUMO

Myocardial ischemia/reperfusion injury (I/R) and the resulting heart failure is one of the main causes of mortality and morbidity worldwide. Camphene has been shown to have anti-inflammatory and hypolipidemic properties; however, its role in the protection of the heart from ischemia and reperfusion has not been investigated. The cardioprotective role of camphene and the mechanism that mediates its action against I/R injury was evaluated in the present study. A single dose of camphene was administered in adult rats prior to ex vivo I/R induction. Infarct size was measured using 2,3,5-triphenyltetrazolium chloride (TTC) staining and cardiomyocyte injury was assessed by determining the release of the enzyme lactate dehydrogenase (LDH). Camphene pretreatment provided significant protection reducing myocardial infarct size and cell death after I/R. The effect was correlated with the reduction in oxidative stress as evidenced by the determination of protein carbonylation, GSH/GSSG ratio, the increase in mitochondrial content as determined by CS activity, and the modulation of antioxidant defense mechanisms (expression of Nrf2 and target genes and activities of CAT, MnSOD, and GR). Furthermore, ferroptosis was decreased, as demonstrated by downregulation of GPx4 expression and reduction in lipid peroxidation. The results suggest that camphene can protect the heart against I/R injury by maintaining redox homeostasis and can hold therapeutic potential for mitigating the detrimental effects of I/R in the heart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA