Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 582(7811): 219-224, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32528093

RESUMO

Encoding Archimedean and non-regular tessellations in self-assembled colloidal crystals promises unprecedented structure-dependent properties for applications ranging from low-friction coatings to optoelectronic metamaterials1-7. Yet, despite numerous computational studies predicting exotic structures even from simple interparticle interactions8-12, the realization of complex non-hexagonal crystals remains experimentally challenging13-18. Here we show that two hexagonally packed monolayers of identical spherical soft microparticles adsorbed at a liquid-liquid interface can assemble into a vast array of two-dimensional micropatterns, provided that they are immobilized onto a solid substrate one after the other. The first monolayer retains its lowest-energy hexagonal structure and acts as a template onto which the particles of the second monolayer are forced to rearrange. The frustration between the two lattices elicits symmetries that would not otherwise emerge if all the particles were assembled in a single step. Simply by varying the packing fraction of the two monolayers, we obtain not only low-coordinated structures such as rectangular and honeycomb lattices, but also rhomboidal, hexagonal and herringbone superlattices encoding non-regular tessellations. This is achieved without directional bonding, and the structures formed are equilibrium structures: molecular dynamics simulations show that these structures are thermodynamically stable and develop from short-range repulsive interactions, making them easy to predict, and thus suggesting avenues towards the rational design of complex micropatterns.

2.
Proc Natl Acad Sci U S A ; 120(11): e2213481120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881619

RESUMO

Endowing materials with the ability to sense, adapt, and respond to stimuli holds the key to a progress leap in autonomous systems. In spite of the growing success of macroscopic soft robotic devices, transferring these concepts to the microscale presents several challenges connected to the lack of suitable fabrication and design techniques and of internal response schemes that connect the materials' properties to the function of the active units. Here, we realize self-propelling colloidal clusters which possess a finite number of internal states, which define their motility and which are connected by reversible transitions. We produce these units via capillary assembly combining hard polystyrene colloids with two different types of thermoresponsive microgels. The clusters, actuated by spatially uniform AC electric fields, adapt their shape and dielectric properties, and consequently their propulsion, via reversible temperature-induced transitions controlled by light. The different transition temperatures for the two microgels enable three distinct dynamical states corresponding to three illumination intensity levels. The sequential reconfiguration of the microgels affects the velocity and shape of the active trajectories according to a pathway defined by tailoring the clusters' geometry during assembly. The demonstration of these simple systems indicates an exciting route toward building more complex units with broader reconfiguration schemes and multiple responses as a step forward in the pursuit of adaptive autonomous systems at the colloidal scale.

3.
J Am Chem Soc ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859572

RESUMO

Ought to their bioinert properties and facile synthesis, poly[(oligoethylene glycol)methacrylate]s (POEGMAs) have been raised as attractive alternatives to poly(ethylene glycols) (PEGs) in an array of (bio)material applications, especially when they are applied as polymer brush coatings. However, commercially available OEG-methacrylate (macro)monomers feature a broad distribution of OEG lengths, thus generating structurally polydisperse POEGMAs when polymerized through reversible deactivation radical polymerization. Here, we demonstrate that the interfacial physicochemical properties of POEGMA brushes are significantly affected by their structural dispersity, i.e., the degree of heterogeneity in the length of side OEG segments. POEGMA brushes synthesized from discrete (macro)monomers obtained through chromatographic purification of commercial mixtures show increased hydration and reduced adhesion when compared to their structurally polydisperse analogues. The observed alteration of interfacial properties is directly linked to the presence of monodisperse OEG side chains, which hamper intramolecular and intermolecular hydrophobic interactions while simultaneously promoting the association of water molecules. These phenomena provide structurally homogeneous POEGMA brushes with a more lubricious and protein repellent character with respect to their heterogeneous counterparts. More generally, in contrast to what has been assumed until now, the properties of POEGMA brushes cannot be anticipated while ruling out the effect of dispersity by (macro)monomer feeds. Simultaneously, side chain dispersity of POEGMAs emerges as a critical parameter for determining the interfacial characteristics of brushes.

4.
Small ; : e2400180, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693098

RESUMO

Nature uses replication to amplify the information necessary for the intricate structures vital for life. Despite some successes with pure nucleotide structures, constructing synthetic microscale systems capable of replication remains largely out of reach. Here, a functioning strategy is shown for the replication of microscale particle assemblies using DNA-coated colloids. By positioning DNA-functionalized colloids using capillary forces and embedding them into a polymer layer, programmable sequences of patchy particles are created that act as a primer and offer precise binding of complementary particles from suspension. The strings of complementary colloids are cross-linked, released from the primer, and purified via flow cytometric sorting to achieve a purity of up to 81% of the replicated sequences. The replication of strings of up to five colloids and non-linear shapes is demonstrated with particles of different sizes and materials. Furthermore, a pathway for exponential self-replication is outlined, including preliminary data that shows the transfer of patches and binding of a second-generation of assemblies from suspension.

5.
Langmuir ; 40(13): 6750-6760, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497776

RESUMO

Colloidal probe microscopy, a technique whereby a microparticle is affixed at the end of an atomic force microscopy (AFM) cantilever, plays a pivotal role in enabling the measurement of friction at the nanoscale and is of high relevance for applications and fundamental studies alike. However, in conventional experiments, the probe particle is immobilized onto the cantilever, thereby restricting its relative motion against a countersurface to pure sliding. Nonetheless, under many conditions of interest, such as during the processing of particle-based materials, particles are free to roll and slide past each other, calling for the development of techniques capable of measuring rolling friction alongside sliding friction. Here, we present a new methodology to measure lateral forces during rolling contacts based on the adaptation of colloidal probe microscopy. Using two-photon polymerization direct laser writing, we microfabricate holders that can capture microparticles, but allow for their free rotation. Once attached to an AFM cantilever, upon lateral scanning, the holders enable both sliding and rolling contacts between the captured particles and the substrate, depending on the interactions, while simultaneously giving access to normal and lateral force signals. Crucially, by producing particles with optically heterogeneous surfaces, we can accurately detect the presence of rotation during scanning. After introducing the workflow for the fabrication and use of the probes, we provide details on their calibration, investigate the effect of the materials used to fabricate them, and report data on rolling friction as a function of the surface roughness of the probe particles. We firmly believe that our methodology opens up new avenues for the characterization of rolling contacts at the nanoscale, aimed, for instance, at engineering particle surface properties and characterizing functional coatings in terms of their rolling friction.

6.
Soft Matter ; 20(13): 2881-2886, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477048

RESUMO

Colloidal particles are considered to be essential building blocks for creating innovative self-assembled and active materials, for which complexity beyond that of compositionally uniform particles is key. However, synthesizing complex, multi-material colloids remains a challenge, often resulting in heterogeneous populations that require post-synthesis purification. Leveraging advances brought forward in the purification of biological samples, here we apply fluorescence-activated cell sorting (FACS) to sort colloidal clusters synthesized through capillary assembly. Our results demonstrate the effectiveness of FACS in sorting clusters based on size, shape, and composition. Notably, we achieve a sorting purity of up to 97% for clusters composed of up to 9 particles, albeit observing a decline in purity with increasing cluster size. Additionally, dimers of different colloids can be purified to over 97%, while linear and triangular trimers can be separated with up to 88% purity. This work underscores the potential of FACS as a promising and little-used tool in colloidal science to support the development of increasingly more intricate particle-based building blocks.


Assuntos
Coloides , Polímeros , Citometria de Fluxo/métodos
7.
Phys Rev Lett ; 131(12): 128202, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802948

RESUMO

Monolayers of colloidal particles at oil-water interfaces readily crystallize owing to electrostatic repulsion, which is often mediated through the oil. However, little attempts exist to control it using oil-soluble electrolytes. We probe the interactions among charged hydrophobic microspheres confined at a water-hexadecane interface and show that repulsion can be continuously tuned over orders of magnitude upon introducing nanomolar amounts of an organic salt into the oil. Our results are compatible with an associative discharging mechanism of surface groups at the particle-oil interface, similar to the charge regulation observed for charged colloids in nonpolar solvents.

8.
Soft Matter ; 19(17): 3069-3079, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37043248

RESUMO

Tracking the three-dimensional rotation of colloidal particles is essential to elucidate many open questions, e.g. concerning the contact interactions between particles under flow, or the way in which obstacles and neighboring particles affect self-propulsion in active suspensions. In order to achieve rotational tracking, optically anisotropic particles are required. We synthesise here rough spherical colloids that present randomly distributed fluorescent asperities and track their motion under different experimental conditions. Specifically, we propose a new algorithm based on a 3-D rotation registration, which enables us to track the 3-D rotation of our rough colloids at short time-scales, using time series of 2-D images acquired at high frame rates with a conventional wide-field microscope. The method is based on the image correlation between a reference image and rotated 3-D prospective images to identify the most likely angular displacements between frames. We first validate our approach against simulated data and then apply it to the cases of: particles flowing through a capillary, freely diffusing at solid-liquid and liquid-liquid interfaces, and self-propelling above a substrate. By demonstrating the applicability of our algorithm and sharing the code, we hope to encourage further investigations in the rotational dynamics of colloidal systems.

9.
Soft Matter ; 19(45): 8790-8801, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37946586

RESUMO

Efficient exploration of space is a paramount motive for active colloids in practical applications. Yet, introducing activity may lead to surface-bound states, hindering efficient space exploration. Here, we show that the interplay between self-motility and fuel-dependent affinity for surfaces affects how efficiently catalytically-active Janus microswimmers explore both liquid-solid and liquid-fluid interfaces decorated with arrays of similarly-sized obstacles. In a regime of constant velocity vs. fuel concentration, we find that microswimmer-obstacle interactions strongly depend on fuel concentration, leading to a counter-intuitive decrease in space exploration efficiency with increased available fuel for all interfaces. Using experiments and theoretical predictions, we attribute this phenomenon to a largely overlooked change in the surface properties of the microswimmers' catalytic cap upon H2O2 exposure. Our findings have implications in the interpretation of experimental studies of catalytically active colloids, as well as in providing new handles to control their dynamics in complex environments.

10.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779972

RESUMO

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

11.
Soft Matter ; 18(40): 7794-7803, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36193704

RESUMO

Surface roughness is an important design parameter to influence the processing of particle-based materials. Current methods to synthesize rough particles present some limitations, e.g. low yield, relative methodological complexity, requirements of multiple steps, or poor roughness control. Here, we thoroughly investigate a facile synthesis route where two silanes, tetraethyl orthosilicate (TEOS) and vinyltrimethoxysilane (VTMS), are added in one pot to form silica particles with controlled corrugated surfaces. We first show that the morphology of these particles can be defined by regulating the amount and ratio of the two silane precursors and by adjusting the concentration of ammonia during synthesis. We characterize the surface topography of the particles using atomic force microscopy and show a direct correlation between surface roughness and the synthesis conditions. Furthermore, we carry out an in situ observation of the evolution of surface morphology and propose a mechanism for surface structuring that hinges on the formation of silane droplets, followed by the preferential hydrolysis/condensation reaction of VTMS starting from the droplet surface and evolving towards the center. The exchange of liquid from the droplets through the VTMS shell leads to stress accumulation and wrinkling/buckling of the particles. Moreover, we explicitly show that osmotic imbalances between the inside and the outside of the droplets regulate their shrinking. We therefore demonstrate that exchanging solvents has a comparable impact to adjusting silane and ammonia content in defining the particle shape and that this synthesis route is highly dynamical. Finally, we demonstrate that it is possible to incorporate fluorescent dyes during synthesis to enable future studies on the impact of surface roughness on dynamic processes, including shear, via direct high-resolution imaging. Our findings show that the mechanism for wrinkling and buckling in colloidal silica particles follows a general scheme found in a broad range of systems, from liposomes and polymeric capsules to Pickering emulsion droplets.

12.
Soft Matter ; 18(38): 7291-7300, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36106459

RESUMO

Advancements in artificial active matter systems heavily rely on our ability to characterise their motion. Yet, the most widely used tool to analyse the latter is standard wide-field microscopy, which is largely limited to the study of two-dimensional motion. In contrast, real-world applications often require the navigation of complex three-dimensional environments. Here, we present a Machine Learning (ML) approach to track Janus microswimmers in three dimensions, using Z-stacks as labelled training data. We demonstrate several examples of ML algorithms using freely available and well-documented software, and find that an ensemble Decision Tree-based model (Extremely Randomised Decision Trees) performs the best at tracking the particles over a volume spanning more than 40 µm. With this model, we are able to localise Janus particles with a significant optical asymmetry from standard wide-field microscopy images, bypassing the need for specialised equipment and expertise such as that required for digital holographic microscopy. We expect that ML algorithms will become increasingly prevalent by necessity in the study of active matter systems, and encourage experimentalists to take advantage of this powerful tool to address the various challenges within the field.

13.
Acc Chem Res ; 53(2): 414-424, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31940173

RESUMO

The confinement of colloidal particles at liquid interfaces offers many opportunities for materials design. Adsorption is driven by a reduction of the total free energy as the contact area between the two liquids is partially replaced by the particle. From an application point of view, particle-stabilized interfaces form emulsions and foams with superior stability. Liquid interfaces also effectively confine colloidal particles in two dimensions and therefore provide ideal model systems to fundamentally study particle interactions, dynamics, and self-assembly. With progress in the synthesis of nanomaterials, more and more complex and functional particles are available for such studies. In this Account, we focus on poly(N-isopropylacrylamide) nanogels and microgels. These are cross-linked polymeric particles that swell and soften by uptaking large amounts of water. The incorporated water can be partially expelled, causing a volume phase transition into a collapsed state when the temperature is increased above approximately 32 °C. Soft microgels adsorbed to liquid interfaces significantly deform under the influence of interfacial tension and assume cross sections exceeding their bulk dimensions. In particular, a pronounced corona forms around the microgel core, consisting of dangling chains at the microgel periphery. These polymer chains expand at the interface and strongly affect the interparticle interactions. The particle deformability therefore leads to a significantly more complex interfacial phase behavior that provides a rich playground to explore structure formation processes. We first discuss the characteristic "fried-egg" or core-corona morphology of individual microgels adsorbed to a liquid interface and comment on the dependence of this interfacial morphology on their physicochemical properties. We introduce different theoretical models to describe their interfacial morphology. In a second part, we introduce how ensembles of microgels interact and self-assemble at liquid interfaces. The core-corona morphology and the possibility to force these elements into overlap upon compression results in a complex phase behavior with a phase transition between microgels with extended and collapsed coronae. We discuss the influence of the internal particle architecture, also including core-shell microgels with rigid cores, on the phase behavior. Finally, we present new routes for the realization of more complex structures, resulting from multiple deposition protocols and from engineering the interaction potential of the individual particles.

14.
Soft Matter ; 17(2): 335-340, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33355590

RESUMO

Understanding and engineering the self-assembly of soft colloidal particles (microgels) at liquid-liquid interfaces is broadening their use in colloidal lithography. Here, we present a new route to assemble rectangular lattices of microgels at near zero surface pressure relying on the balance between attractive quadrupolar capillary interactions and steric repulsion among the particles at water/oil interfaces. These self-assembled rectangular lattices are obtained for a broad range of particles and, after deposition, can be used as lithography masks to obtain regular arrays of vertically aligned nanowires via wet and dry etching processes.

15.
Soft Matter ; 17(31): 7252-7259, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34318863

RESUMO

When concentrated particle suspensions flow into a constricting channel, the suspended particles may either smoothly flow through the constriction or jam and clog the channel. These clogging events are typically detrimental to technological processes, such as in the printing of dense pastes or in filtration, but can also be exploited in micro-separation applications. Many studies have to date focused on important parameters influencing the occurrence of clogs, such as flow velocity, particle concentration, and channel geometry. However, the investigation of the role played by the particle surface properties has surprisingly received little attention so far. Here, we study the effect of surface roughness on the clogging of suspensions of silica particles under pressure-driven flows along a microchannel presenting a constriction. We synthesize micron-sized particles with uniform surface chemistry and tunable roughness and determine the occurrence of clogging events as a function of velocity and volume fraction for a given surface topography. Our results show that there is a clear correlation between surface roughness and flow rate, indicating that rougher particles are more likely to jam at the constriction for slower flows. These findings identify surface roughness as an essential parameter to consider in the formulation of particulate suspensions for applications where clogging plays an important role.

16.
Proc Natl Acad Sci U S A ; 115(20): 5117-5122, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29717043

RESUMO

Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle-particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as "stick-slip" frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle-particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions.

17.
Phys Rev Lett ; 125(9): 098001, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915612

RESUMO

We apply laser light to induce the asymmetric heating of Janus colloids adsorbed at water-oil interfaces and realize active micrometric "Marangoni surfers." The coupling of temperature and surfactant concentration gradients generates Marangoni stresses leading to self-propulsion. Particle velocities span 4 orders of magnitude, from microns/s to cm/s, depending on laser power and surfactant concentration. Experiments are rationalized by finite elements simulations, defining different propulsion regimes relative to the magnitude of the thermal and solutal Marangoni stress components.

18.
Langmuir ; 36(38): 11171-11182, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32897078

RESUMO

Control over the surface roughness of colloidal particles offers exciting opportunities to tailor the properties and the processing of a broad range of soft matter systems. Moreover, identifying surface roughness as a design parameter reveals the possibility to connect seemingly distinct phenomena and materials via the role played by roughness effects. In this feature article, we concisely review some approaches to synthesize and characterize rough colloidal particles, with a focus on model spherical colloids. We then discuss the impact that surface roughness has on both the high-shear rheology of dense suspensions and the stabilization of Pickering emulsions. Commenting on developments of our own research, we aim to offer an original perspective for a property-oriented development of colloidal particles that transcends classical divisions between materials and processes toward innovative solutions.

19.
Langmuir ; 36(25): 7066-7073, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31975603

RESUMO

Combining experiments on active colloids, whose propulsion velocity can be controlled via a feedback loop, and the theory of active Brownian motion, we explore the dynamics of an overdamped active particle with a motility that depends explicitly on the particle orientation. In this case, the active particle moves faster when oriented along one direction and slower when oriented along another, leading to anisotropic translational dynamics which is coupled to the particle's rotational diffusion. We propose a basic model of active Brownian motion for orientation-dependent motility. On the basis of this model, we obtain analytical results for the mean trajectories, averaged over the Brownian noise for various initial configurations, and for the mean-square displacements including their non-Gaussian behavior. The theoretical results are found to be in good agreement with the experimental data. Orientation-dependent motility is found to induce significant anisotropy in the particle displacement, mean-square displacement, and non-Gaussian parameter even in the long-time limit. Our findings establish a methodology for engineering complex anisotropic motilities of active Brownian particles, with a potential impact in the study of the swimming behavior of microorganisms subjected to anisotropic driving fields.

20.
Proc Natl Acad Sci U S A ; 114(46): 12150-12155, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087329

RESUMO

Dense colloidal suspensions can propagate and absorb large mechanical stresses, including impacts and shocks. The wave transport stems from the delicate interplay between the spatial arrangement of the structural units and solvent-mediated effects. For dynamic microscopic systems, elastic deformations of the colloids are usually disregarded due to the damping imposed by the surrounding fluid. Here, we study the propagation of localized mechanical pulses in aqueous monolayers of micron-sized particles of controlled microstructure. We generate extreme localized deformation rates by exciting a target particle via pulsed-laser ablation. In crystalline monolayers, stress propagation fronts take place, where fast-moving particles (V approximately a few meters per second) are aligned along the symmetry axes of the lattice. Conversely, more viscous solvents and disordered structures lead to faster and isotropic energy absorption. Our results demonstrate the accessibility of a regime where elastic collisions also become relevant for suspensions of microscopic particles, behaving as "billiard balls" in a liquid, in analogy with regular packings of macroscopic spheres. We furthermore quantify the scattering of an impact as a function of the local structural disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA