Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Biol ; 21(2): e3001991, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854036

RESUMO

The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Filogenia , Evolução Biológica , Ciências Humanas , Mamíferos
2.
Proc Biol Sci ; 290(2000): 20230897, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37282535

RESUMO

Modern agriculture has drastically changed global landscapes and introduced pressures on wildlife populations. Policy and management of agricultural systems has changed over the last 30 years, a period characterized not only by intensive agricultural practices but also by an increasing push towards sustainability. It is crucial that we understand the long-term consequences of agriculture on beneficial invertebrates and assess if policy and management approaches recently introduced are supporting their recovery. In this study, we use large citizen science datasets to derive trends in invertebrate occupancy in Great Britain between 1990 and 2019. We compare these trends between regions of no- (0%), low- (greater than 0-50%) and high-cropland (greater than 50%) cover, which includes arable and horticultural crops. Although we detect general declines, invertebrate groups are declining most strongly in high-cropland cover regions. This suggests that even in the light of improved policy and management over the last 30 years, the way we are managing cropland is failing to conserve and restore invertebrate communities. New policy-based drivers and incentives are required to support the resilience and sustainability of agricultural ecosystems. Post-Brexit changes in UK agricultural policy and reforms under the Environment Act offer opportunities to improve agricultural landscapes for the benefit of biodiversity and society.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , União Europeia , Reino Unido , Biodiversidade , Agricultura , Invertebrados , Produtos Agrícolas
3.
Ecol Lett ; 24(7): 1318-1327, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33932267

RESUMO

The negative relationship between body size and population density in mammals is often interpreted as resulting from energetic constraints. In a global change scenario, however, this relationship might be expected to change, given the size-dependent nature of anthropogenic pressures and vulnerability to extinction. Here we test whether the size-density relationship (SDR) in mammals has changed over the last 50 years. We show that the relationship has shifted down and became shallower, corresponding to a decline in population density of 31-73%, for the largest and smallest mammals, respectively. However, the SDRs became steeper in some groups (e.g. carnivores) and shallower in others (e.g. herbivores). The Anthropocene reorganisation of biotic systems is apparent in macroecological relationships, reinforcing the notion that biodiversity pattens are contingent upon conditions at the time of investigation. We call for an increased attention to the role of global change on macroecological inferences.


Assuntos
Biodiversidade , Mamíferos , Animais , Tamanho Corporal , Densidade Demográfica
4.
Biol Lett ; 17(10): 20210240, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665990

RESUMO

We combined participatory science data and museum records to understand long-term changes in occupancy for 29 ant species in Denmark over 119 years. Bayesian occupancy modelling indicated change in occupancy for 15 species: five increased, four declined and six showed fluctuating trends. We consider how trends may have been influenced by life-history and habitat changes. Our results build on an emerging picture that biodiversity change in insects is more complex than implied by the simple insect decline narrative.


Assuntos
Formigas , Animais , Teorema de Bayes , Biodiversidade , Ecossistema
5.
Am Nat ; 195(1): 70-81, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868535

RESUMO

Explaining variation in life histories remains a major challenge because they are multidimensional and there are many competing explanatory theories and paradigms. An influential concept in life-history theory is the fast-slow continuum, exemplified by mammals. Determining the utility of such concepts across taxonomic groups requires comparison of the groups' life histories in multidimensional space. Insects display enormous species richness and phenotypic diversity, but testing hypotheses like the fast-slow continuum has been inhibited by incomplete trait data. We use phylogenetic imputation to generate complete data sets of seven life-history traits in orthopterans (grasshoppers and crickets) and examine the robustness of these imputations for our findings. Three phylogenetic principal components explain 83%-96% of variation in these data. We find consistent evidence of an axis mostly following expectations of a fast-slow continuum, except that "slow" species produce larger, not smaller, clutches of eggs. We show that the principal axes of variation in orthopterans and reptiles are mutually explanatory, as are those of mammals and birds. Essentially, trait covariation in Orthoptera, with "slow" species producing larger clutches, is more reptilelike than mammal-like or birdlike. We conclude that the fast-slow continuum is less pronounced in Orthoptera than it is in birds and mammals, reducing the universal relevance of this pattern and the theories that predict it.


Assuntos
Gafanhotos , Gryllidae , Características de História de Vida , Mamíferos , Animais , Insetos , Filogenia , Reprodução
7.
Glob Chang Biol ; 23(8): 3040-3051, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27992955

RESUMO

Land-use change is one of the primary drivers of species loss, yet little is known about its effect on other components of biodiversity that may be at risk. Here, we ask whether, and to what extent, landscape simplification, measured as the percentage of arable land in the landscape, disrupts the functional and phylogenetic association between primary producers and consumers. Across seven European regions, we inferred the potential associations (functional and phylogenetic) between host plants and butterflies in 561 seminatural grasslands. Local plant diversity showed a strong bottom-up effect on butterfly diversity in the most complex landscapes, but this effect disappeared in simple landscapes. The functional associations between plant and butterflies are, therefore, the results of processes that act not only locally but are also dependent on the surrounding landscape context. Similarly, landscape simplification reduced the phylogenetic congruence among host plants and butterflies indicating that closely related butterflies become more generalist in the resources used. These processes occurred without any detectable change in species richness of plants or butterflies along the gradient of arable land. The structural properties of ecosystems are experiencing substantial erosion, with potentially pervasive effects on ecosystem functions and future evolutionary trajectories. Loss of interacting species might trigger cascading extinction events and reduce the stability of trophic interactions, as well as influence the longer term resilience of ecosystem functions. This underscores a growing realization that species richness is a crude and insensitive metric and that both functional and phylogenetic associations, measured across multiple trophic levels, are likely to provide additional and deeper insights into the resilience of ecosystems and the functions they provide.


Assuntos
Biodiversidade , Borboletas , Filogenia , Animais , Ecossistema , Europa (Continente)
8.
J Anim Ecol ; 84(4): 1112-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25732937

RESUMO

In 2003, 24 presence-absence ß-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of ß-diversity. ß-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a ß-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of ß than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (ßA,B  = ßB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer ß-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, ßsim , performed well overall. Only ßBaselga R turn , ßBaselga B-C turn and ßsim measured purely species turnover and were independent of nestedness. Among the other metrics, sensitivity to nestedness varied >4-fold. Our results indicate large amounts of redundancy among existing ß-diversity metrics, whilst the estimation of unseen shared and unshared species is lacking and should be addressed in the design of new abundance-based metrics.


Assuntos
Biodiversidade , Ecologia/métodos , Animais , Modelos Biológicos , Densidade Demográfica
9.
Proc Biol Sci ; 280(1751): 20122122, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23193124

RESUMO

Space use is an important aspect of animal ecology, yet our understanding is limited by a lack of synthesis between interspecific and intraspecific studies. We present analyses of a dataset of 286 estimates of home range overlap from 100 primate species, with comparable samples for other space-use traits. To the best of our knowledge, this represents the first multispecies study using overlap data estimated directly from field observations. We find that space-use traits in primates are only weakly related to body mass, reflecting their largely arboreal habits. Our results confirm a theory that home range overlap explains the differences in allometric scaling between population density and home range size. We then test a suite of hypotheses to explain home range overlap, both among and within species. We find that overlap is highest for larger-bodied species living in large home ranges at high population densities, where annual rainfall is low, and is higher for arboreal than terrestrial species. Most of these results are consistent with the economics of resource defence, although the predictions of one specific theory of home range overlap are not supported. We conclude that home range overlap is somewhat predictable, but the theoretical basis of animal space use remains patchy.


Assuntos
Comportamento de Retorno ao Território Vital/fisiologia , Modelos Biológicos , Primatas/fisiologia , Comportamento Espacial/fisiologia , Animais , Peso Corporal , Análise dos Mínimos Quadrados , Observação , Filogenia , Densidade Demográfica , Especificidade da Espécie
10.
J Anim Ecol ; 82(5): 1009-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23701213

RESUMO

1. The power-law dependence of metabolic rate on body mass has major implications at every level of ecological organization. However, the overwhelming majority of studies examining this relationship have used basal or resting metabolic rates, and/or have used data consisting of species-averaged masses and metabolic rates. Field metabolic rates are more ecologically relevant and are probably more directly subject to natural selection than basal rates. Individual rates might be more important than species-average rates in determining the outcome of ecological interactions, and hence selection. 2. We here provide the first comprehensive database of published field metabolic rates and body masses of individual birds and mammals, containing measurements of 1498 animals of 133 species in 28 orders. We used linear mixed-effects models to answer questions about the body mass scaling of metabolic rate and its taxonomic universality/heterogeneity that have become classic areas of controversy. Our statistical approach allows mean scaling exponents and taxonomic heterogeneity in scaling to be analysed in a unified way while simultaneously accounting for nonindependence in the data due to shared evolutionary history of related species. 3. The mean power-law scaling exponents of metabolic rate vs. body mass relationships were 0.71 [95% confidence intervals (CI) 0.625-0.795] for birds and 0.64 (95% CI 0.564-0.716) for mammals. However, these central tendencies obscured meaningful taxonomic heterogeneity in scaling exponents. The primary taxonomic level at which heterogeneity occurred was the order level. Substantial heterogeneity also occurred at the species level, a fact that cannot be revealed by species-averaged data sets used in prior work. Variability in scaling exponents at both order and species levels was comparable to or exceeded the differences 3/4-2/3 = 1/12 and 0.71-0.64. 4. Results are interpreted in the light of a variety of existing theories. In particular, results are consistent with the heat dissipation theory of Speakman & Król (2010) and provided some support for the metabolic levels boundary hypothesis of Glazier (2010). 5. Our analysis provides the first comprehensive empirical analysis of the scaling relationship between field metabolic rate and body mass in individual birds and mammals. Our data set is a valuable contribution to those interested in theories of the allometry of metabolic rates.


Assuntos
Aves/metabolismo , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Mamíferos/metabolismo , Animais , Evolução Biológica , Regulação da Temperatura Corporal , Classificação , Bases de Dados Factuais , Modelos Biológicos
11.
Nat Commun ; 14(1): 74, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693827

RESUMO

Land-use and climate change have been linked to changes in wildlife populations, but the role of socioeconomic factors in driving declines, and promoting population recoveries, remains relatively unexplored. Here, we evaluate potential drivers of population changes observed in 50 species of some of the world's most charismatic and functionally important fauna-large mammalian carnivores. Our results reveal that human socioeconomic development is more associated with carnivore population declines than habitat loss or climate change. Rapid increases in socioeconomic development are linked to sharp population declines, but, importantly, once development slows, carnivore populations have the potential to recover. The context- and threshold-dependent links between human development and wildlife population health are challenges to the achievement of the UN Sustainable development goals.


Assuntos
Carnívoros , Mudança Climática , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Ecossistema , Animais Selvagens , Fatores Socioeconômicos
12.
Biol Rev Camb Philos Soc ; 98(5): 1492-1508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37062709

RESUMO

Policy makers require high-level summaries of biodiversity change. However, deriving such summaries from raw biodiversity data is a complex process involving several intermediary stages. In this paper, we describe an operational workflow for generating annual estimates of species occupancy at national scales from raw species occurrence data, which can be used to construct a range of policy-relevant biodiversity indicators. We describe the workflow in detail: from data acquisition, data assessment and data manipulation, through modelling, model evaluation, application and dissemination. At each stage, we draw on our experience developing and applying the workflow for almost a decade to outline the challenges that analysts might face. These challenges span many areas of ecology, taxonomy, data science, computing and statistics. In our case, the principal output of the workflow is annual estimates of occupancy, with measures of uncertainty, for over 5000 species in each of several defined 'regions' (e.g. countries, protected areas, etc.) of the UK from 1970 to 2019. This data product corresponds closely to the notion of a species distribution Essential Biodiversity Variable (EBV). Throughout the paper, we highlight methodologies that might not be applicable outside of the UK and suggest alternatives. We also highlight areas where the workflow can be improved; in particular, methods are needed to mitigate and communicate the risk of bias arising from the lack of representativeness that is typical of biodiversity data. Finally, we revisit the 'ideal' and 'minimal' criteria for species distribution EBVs laid out in previous contributions and pose some outstanding questions that should be addressed as a matter of priority. Going forward, we hope that this paper acts as a template for research groups around the world seeking to develop similar data products.


Assuntos
Biodiversidade , Ecologia , Fluxo de Trabalho , Ecologia/métodos
13.
Nat Commun ; 14(1): 6759, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903781

RESUMO

Although increased temperatures are known to reinforce the effects of habitat destruction at local to landscape scales, evidence of their additive or interactive effects is limited, particularly over larger spatial extents and longer timescales. To address these deficiencies, we created a dataset of land-use changes over 75 years, documenting the loss of over half (>3000 km2) the semi-natural grassland of Great Britain. Pairing this dataset with climate change data, we tested for relationships to distribution changes in birds, butterflies, macromoths, and plants (n = 1192 species total). We show that individual or additive effects of climate warming and land conversion unambiguously increased persistence probability for 40% of species, and decreased it for 12%, and these effects were reflected in both range contractions and expansions. Interactive effects were relatively rare, being detected in less than 1 in 5 species, and their overall effect on extinction risk was often weak. Such individualistic responses emphasise the importance of including species-level information in policies targeting biodiversity and climate adaptation.


Assuntos
Borboletas , Animais , Reino Unido , Borboletas/fisiologia , Ecossistema , Biodiversidade , Mudança Climática
14.
Biol Lett ; 8(6): 904-6, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22915630

RESUMO

The symposium 'What is Macroecology?' was held in London on 20 June 2012. The event was the inaugural meeting of the Macroecology Special Interest Group of the British Ecological Society and was attended by nearly 100 scientists from 11 countries. The meeting reviewed the recent development of the macroecological agenda. The key themes that emerged were a shift towards more explicit modelling of ecological processes, a growing synthesis across systems and scales, and new opportunities to apply macroecological concepts in other research fields.


Assuntos
Ecologia/métodos , Ecologia/tendências , Ecossistema , Modelos Biológicos , Geografia , Fatores de Tempo
15.
Biol Lett ; 7(4): 615-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21450722

RESUMO

The relationship between body mass and abundance is a major focus for research in macroecology. The form of this relationship has been suggested to reflect the partitioning of energy among species. We revisit classical datasets to show that size-density relationships vary systematically among taxonomic groups, with most variation occurring at the order level. We use this knowledge to make a novel test of the 'energy equivalence rule', at the taxonomic scale appropriate for the data. We find no obvious relationship between order-specific exponents for abundance and metabolic rate, although most orders show substantially shallower (less negative) scaling than predicted by energy equivalence. This finding implies greater energy flux among larger-bodied animals, with the largest species using two orders of magnitude more energy than the smallest. Our results reject the traditional interpretation of energy equivalence as a predictive rule. However, some variation in size-density exponents is consistent with a model of geometric constraints on foraging.


Assuntos
Tamanho Corporal , Metabolismo Energético , Animais , Densidade Demográfica
16.
Curr Biol ; 31(20): 4627-4634.e3, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34411527

RESUMO

Declines in invertebrate biodiversity1,2 pose a significant threat to key ecosystem services.3-5 Current analyses of biodiversity often focus on taxonomic diversity (e.g., species richness),6,7 which does not account for the functional role of a species. Functional diversity of species' morphological or behavioral traits is likely more relevant to ecosystem service delivery than taxonomic diversity, as functional diversity has been found to be a key driver of a number of ecosystem services including decomposition and pollination.8-12 At present, we lack a good understanding of long-term and large-scale changes in functional diversity, which limits our capacity to determine the vulnerability of key ecosystem services with ongoing biodiversity change. Here we derive trends in functional diversity and taxonomic diversity over a 45-year period across Great Britain for species supporting freshwater aquatic functions, pollination, natural pest control, and agricultural pests (a disservice). Species supporting aquatic functions showed a synchronous collapse and recovery in functional and taxonomic diversity. In contrast, pollinators showed an increase in taxonomic diversity, but a decline and recovery in functional diversity. Pest control agents and pests showed greater stability in functional diversity over the assessment period. We also found that functional diversity could appear stable or show patterns of recovery, despite ongoing changes in the composition of traits among species. Our results suggest that invertebrate assemblages can show considerable variability in their functional structure over time at a national scale, which provides an important step in determining the long-term vulnerability of key ecosystem services with ongoing biodiversity change.


Assuntos
Ecossistema , Invertebrados , Agricultura , Animais , Biodiversidade , Polinização
17.
Nat Ecol Evol ; 5(11): 1510-1519, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462602

RESUMO

The Anthropocene is characterized by unparalleled human impact on other species, potentially ushering in the sixth mass extinction. Yet mitigation efforts remain hampered by limited information on the spatial patterns and intensity of the threats driving global biodiversity loss. Here we use expert-derived information from the International Union for Conservation of Nature Red List on threats to 23,271 species, representing all terrestrial amphibians, birds and mammals, to generate global maps of the six major threats to these groups: agriculture, hunting and trapping, logging, pollution, invasive species, and climate change. Our results show that agriculture and logging are pervasive in the tropics and that hunting and trapping is the most geographically widespread threat to mammals and birds. Additionally, current representations of human pressure underestimate the overall pressure on biodiversity, due to the exclusion of threats such as hunting and climate change. Alarmingly, this is particularly the case in areas of the highest biodiversity importance.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Efeitos Antropogênicos , Humanos , Caça , Vertebrados
18.
Ecol Lett ; 13(6): 728-35, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20353439

RESUMO

The metabolic theory of ecology links physiology with ecology, and successfully predicts many allometric scaling relationships. In recent years, proponents and critics of metabolic theory have debated vigorously about the scaling of metabolic rate. We show that the controversy arose, in part, because researchers examined the mean exponent separately from the variance. We estimate both quantities simultaneously using linear mixed-effects models and data from 1242 animal species. Metabolic rate scaling converges on the predicted value of 3/4 but is highly heterogeneous: 50% of orders lie outside the range 0.68-0.82. These findings are robust to several forms of statistical uncertainty. We then test competing hypotheses about the variation. Metabolic theory is currently unable to explain differences in scaling among orders, but the patterns are not consistent with competing explanations either. We conclude that current theories are inadequate to explain the full range of metabolic scaling patterns observed in nature.


Assuntos
Metabolismo Basal , Fenômenos Ecológicos e Ambientais , Modelos Biológicos , Análise de Variância , Animais , Modelos Lineares
19.
J Anim Ecol ; 79(3): 610-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20180875

RESUMO

1. We present a statistical analysis of the scaling of resting (basal) metabolic rate, BMR, with body mass, B(m) and body temperature, T(b), in mammals. 2. Whilst the majority of the variance in ln BMR is explained by ln B(m), the T(b) term is statistically significant. The best fit model was quadratic, indicating that the scaling of ln BMR with ln B(m) varies with body size; the value of any scaling exponent estimated for a sample of mammals will therefore depend on the size distribution of species in the study. This effect can account for much of the variation in scaling exponents reported in the literature for mammals. 3. In all models, inclusion of T(b) reduced the strength of scaling with ln B(m). The model including T(b) suggests that birds and mammals have a similar underlying thermal dependence of BMR, equivalent to a Q(10) of 2.9 across the range of T(b) values 32-42 degrees C. 4. There was significant heterogeneity in both the mass scaling exponent and mean BMR across mammalian orders, with a tendency for orders dominated by larger taxa to have steeper scaling exponents. This heterogeneity was particularly marked across orders with smaller mean B(m) and the taxonomic composition of the sample will thus also affect the observed scaling exponent. After correcting for the effects of ln B(m) and T(b), Soricomorpha, Didelphimorphia and Artiodactyla had the highest BMR of those orders represented by more than 10 species in the data set. 5. Inclusion of T(b) in the model removed the effect of diet category evident from a model in ln B(m) alone and widely reported in the literature; this was caused by a strong interaction between diet category and T(b) in mammals. 6. Inclusion of mean ambient temperature, T(a), in the model indicated a significant inverse relationship between ln BMR and T(a), complicated by an interaction between T(a) and T(b). All other things being equal, a polar mammal living at -10 degrees C has a body temperature approximately 2.7 degrees C warmer and a BMR higher by approximately 40% than a tropical mammal of similar size living at 25 degrees C.


Assuntos
Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Mamíferos/fisiologia , Modelos Biológicos , Animais , Bases de Dados Factuais , Dieta , Ecossistema , Comportamento Alimentar/fisiologia , Modelos Lineares , Mamíferos/classificação , Mamíferos/genética , Fenóis , Filogenia
20.
Nat Ecol Evol ; 4(3): 384-392, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066888

RESUMO

Large-scale biodiversity changes are measured mainly through the responses of a few taxonomic groups. Much less is known about the trends affecting most invertebrates and other neglected taxa, and it is unclear whether well-studied taxa, such as vertebrates, reflect changes in wider biodiversity. Here, we present and analyse trends in the UK distributions of over 5,000 species of invertebrates, bryophytes and lichens, measured as changes in occupancy. Our results reveal substantial variation in the magnitude, direction and timing of changes over the last 45 years. Just one of the four major groups analysed, terrestrial non-insect invertebrates, exhibits the declining trend reported among vertebrates and butterflies. Both terrestrial insects and the bryophytes and lichens group increased in average occupancy. A striking pattern is found among freshwater species, which have undergone a strong recovery since the mid-1990s after two decades of decline. We show that, while average occupancy among most groups appears to have been stable or increasing, there has been substantial change in the relative commonness and rarity of individual species, indicating considerable turnover in community composition. Additionally, large numbers of species have experienced substantial declines. Our results suggest a more complex pattern of biodiversity change in the United Kingdom than previously reported.


Assuntos
Borboletas , Líquens , Animais , Biodiversidade , Ecossistema , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA