Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877783

RESUMO

Application of physical forces, ranging from ultrasound to electric fields, is recommended in various clinical practice guidelines, including those for treating cancers and bone fractures. However, the mechanistic details of such treatments are often inadequately understood, primarily due to the absence of comprehensive study models. In this study, we demonstrate that an alternating magnetic field (AMF) inherently possesses a direct anti-cancer effect by enhancing oxidative phosphorylation (OXPHOS) and thereby inducing metabolic reprogramming. We observed that the proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz. In contrast, this exposure did not affect normal human astrocytes (NHA). Additionally, in mouse models implanted with human GBM cells in the brain, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival. This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression. The anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger. Along with these observations, there was a decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR). This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Our results suggest that AMF exposure may offer a straightforward strategy to inhibit cancer cell growth by leveraging oxidative stress through metabolic reprogramming.

2.
PLoS Genet ; 17(2): e1009339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524049

RESUMO

Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype.


Assuntos
Colágeno Tipo I/genética , Proteínas de Choque Térmico HSP47/genética , Mutação de Sentido Incorreto , Osteogênese Imperfeita/genética , Sequência de Aminoácidos , Células Cultivadas , Pré-Escolar , Colágeno Tipo I/metabolismo , Evolução Fatal , Feminino , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Lactente , Recém-Nascido , Modelos Moleculares , Osteogênese Imperfeita/metabolismo , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
3.
J Biol Chem ; 298(12): 102713, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403858

RESUMO

Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.


Assuntos
Colágeno , Doenças do Tecido Conjuntivo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Humanos , Colágeno/metabolismo , Glicosilação , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Processamento de Proteína Pós-Traducional
4.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894834

RESUMO

Mutations in the FKBP14 gene encoding the endoplasmic reticulum resident collagen-related proline isomerase FK506 binding protein 22 kDa (FKBP22) result in kyphoscoliotic Ehlers-Danlos Syndrome (EDS), which is characterized by a broad phenotypic outcome. A plausible explanation for this outcome is that FKBP22 participates in the biosynthesis of subsets of collagen types: FKBP22 selectively binds to collagens III, IV, VI, and X, but not to collagens I, II, V, and XI. However, these binding mechanisms have never been explored, and they may underpin EDS subtype heterogeneity. Here, we used collagen Toolkit peptide libraries to investigate binding specificity. We observed that FKBP22 binding was distributed along the collagen helix. Further, it (1) was higher on collagen III than collagen II peptides and it (2) was correlated with a positive peptide charge. These findings begin to elucidate the mechanism by which FKBP22 interacts with collagen.


Assuntos
Síndrome de Ehlers-Danlos , Proteínas de Ligação a Tacrolimo , Humanos , Proteínas de Ligação a Tacrolimo/metabolismo , Colágeno/genética , Peptidilprolil Isomerase/genética , Mutação , Síndrome de Ehlers-Danlos/genética
5.
J Biol Chem ; 296: 100453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631195

RESUMO

Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.


Assuntos
Colágeno Tipo I/metabolismo , Colágeno Tipo V/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo V/genética , Retículo Endoplasmático Rugoso/metabolismo , Hidroxilação , Hidroxilisina/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Colágeno-Prolina Dioxigenase/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética
6.
Biophys J ; 120(18): 4013-4028, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34390685

RESUMO

Extracellular matrix mechanics influence diverse cellular functions, yet surprisingly little is known about the mechanical properties of their constituent collagen proteins. In particular, network-forming collagen IV, an integral component of basement membranes, has been far less studied than fibril-forming collagens. A key feature of collagen IV is the presence of interruptions in the triple-helix-defining (Gly-X-Y) sequence along its collagenous domain. Here, we used atomic force microscopy to determine the impact of sequence heterogeneity on the local flexibility of collagen IV and of the fibril-forming collagen III. Our extracted flexibility profile of collagen IV reveals that it possesses highly heterogeneous mechanics, ranging from semiflexible regions as found for fibril-forming collagens to a lengthy region of high flexibility toward its N-terminus. A simple model in which flexibility is dictated only by the presence of interruptions fit the extracted profile reasonably well, providing insight into the alignment of chains and demonstrating that interruptions, particularly when coinciding in multiple chains, significantly enhance local flexibility. To a lesser extent, sequence variations within the triple helix lead to variable flexibility, as seen along the continuously triple-helical collagen III. We found this fibril-forming collagen to possess a high-flexibility region around its matrix-metalloprotease binding site, suggesting a unique mechanical fingerprint of this region that is key for matrix remodeling. Surprisingly, proline content did not correlate with local flexibility in either collagen type. We also found that physiologically relevant changes in pH and chloride concentration did not alter the flexibility of collagen IV, indicating such environmental changes are unlikely to control its compaction during secretion. Although extracellular chloride ions play a role in triggering collagen IV network formation, they do not appear to modulate the structure of its collagenous domain.


Assuntos
Colágeno , Matriz Extracelular , Membrana Basal , Colágenos Fibrilares , Conformação Proteica
7.
J Neurosci ; 40(17): 3374-3384, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32229518

RESUMO

Stress alters brain function by modifying the structure and function of neurons and astrocytes. The fine processes of astrocytes are critical for the clearance of neurotransmitters during synaptic transmission. Thus, experience-dependent remodeling of glial processes is anticipated to alter the output of neural circuits. However, the molecular mechanisms that underlie glial structural plasticity are not known. Here we show that a single exposure of male and female mice to an acute stress produced a long-lasting retraction of the lateral processes of cerebellar Bergmann glial cells. These cells express the GluA1 subunit of AMPA-type glutamate receptors, and GluA1 knockdown is known to shorten the length of glial processes. We found that stress reduced the level of GluA1 protein and AMPA receptor-mediated currents in Bergmann glial cells, and these effects were absent in mice devoid of CPEB3, a protein that binds to GluA1 mRNA and regulates GluA1 protein synthesis. Administration of a ß-adrenergic receptor blocker attenuated the reduction in GluA1, and deletion of adenylate cyclase 5 prevented GluA1 suppression. Therefore, stress suppresses GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway, and reduces the length of astrocyte lateral processes. Our results identify a novel mechanism for GluA1 subunit plasticity in non-neuronal cells and suggest a previously unappreciated role for AMPA receptors in stress-induced astrocytic remodeling.SIGNIFICANCE STATEMENT Astrocytes play important roles in synaptic transmission by extending fine processes around synapses. In this study, we showed that a single exposure to an acute stress triggered a retraction of lateral/fine processes in mouse cerebellar astrocytes. These astrocytes express GluA1, a glutamate receptor subunit known to lengthen astrocyte processes. We showed that astrocytic structural changes are associated with a reduction of GluA1 protein levels. This requires activation of ß-adrenergic receptors and is triggered by noradrenaline released during stress. We identified adenylyl cyclase 5, an enzyme that elevates cAMP levels, as a downstream effector and found that lowering GluA1 levels depends on CPEB3 proteins that bind to GluA1 mRNA. Therefore, stress regulates GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway in astrocytes and remodels their fine processes.


Assuntos
Adenilil Ciclases/metabolismo , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Angústia Psicológica , Proteínas de Ligação a RNA/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Transmissão Sináptica/fisiologia
8.
Histopathology ; 78(3): 414-423, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32813926

RESUMO

AIMS: Proliferative activity, evaluated from the Ki-67 index, is a strong prognostic factor in lung adenocarcinoma (LADC). Here, we optimised a procedure to measure the Ki-67 index and establish the best cut-off value. METHODS AND RESULTS: We examined 342 stage I LADCs for the immunohistochemical expression of Ki-67 using different antibodies, MIB1 and SP6. The results revealed the superior specificity of SP6; therefore, SP6 was used in subsequent analyses. Slides were scanned with a virtual slide system. Using software, tumour cells were counted in a whole tumour. Thereafter, the tumour was evenly subdivided into 0.25-mm2 tiles. The frequency of positive cells was counted in each tile of an invasive area or the whole tumour. We calculated the number of tumour cells required to produce a 95% confidence interval (CI) <0.05. Additionally, we calculated coverage probabilities (CP) using two different methods, counting any number or 200 cells per tile. The results showed that we could meet our goal by counting 2000 cells from 10 random tiles (200 cells each) in invasive areas. CONCLUSIONS: We successfully developed an optimal procedure for determination of the Ki-67 labelling index using an SP6 antibody, which provided CP > 70% and CI of <0.05 in more than 90% of cases. Furthermore, we identified an optimal cut-off value of 0.12 with an alternative of 0.15, based on disease recurrence. This procedure and the cut-off values may be used in the routine pathological diagnosis of LADC.


Assuntos
Adenocarcinoma de Pulmão , Antígeno Ki-67/análise , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Prognóstico
9.
Arterioscler Thromb Vasc Biol ; 40(9): 2212-2226, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640908

RESUMO

OBJECTIVE: The ductus arteriosus (DA) is a fetal artery connecting the aorta and pulmonary arteries. Progressive matrix remodeling, that is, intimal thickening (IT), occurs in the subendothelial region of DA to bring anatomic DA closure. IT is comprised of multiple ECMs (extracellular matrices) and migrated smooth muscle cells (SMCs). Because glycoprotein fibulin-1 binds to multiple ECMs and regulates morphogenesis during development, we investigated the role of fibulin-1 in DA closure. Approach and Results: Fibulin-1-deficient (Fbln1-/-) mice exhibited patent DA with hypoplastic IT. An unbiased transcriptome analysis revealed that EP4 (prostaglandin E receptor 4) stimulation markedly increased fibulin-1 in DA-SMCs via phospholipase C-NFκB (nuclear factor κB) signaling pathways. Fluorescence-activated cell sorting (FACS) analysis demonstrated that fibulin-1 binding protein versican was derived from DA-endothelial cells (ECs). We examined the effect of fibulin-1 on directional migration toward ECs in association with versican by using cocultured DA-SMCs and ECs. EP4 stimulation promoted directional DA-SMC migration toward ECs, which was attenuated by either silencing fibulin-1 or versican. Immunofluorescence demonstrated that fibulin-1 and versican V0/V1 were coexpressed at the IT of wild-type DA, whereas 30% of versican-deleted mice lacking a hyaluronan binding site displayed patent DA. Fibulin-1 expression was attenuated in the EP4-deficient mouse (Ptger4-/-) DA, which exhibits patent DA with hypoplastic IT, and fibulin-1 protein administration restored IT formation. In human DA, fibulin-1 and versican were abundantly expressed in SMCs and ECs, respectively. CONCLUSIONS: Fibulin-1 contributes to DA closure by forming an environment favoring directional SMC migration toward the subendothelial region, at least, in part, in combination with EC-derived versican and its binding partner hyaluronan.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade do Canal Arterial/metabolismo , Canal Arterial/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Canal Arterial/anormalidades , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/patologia , Células Endoteliais/patologia , Matriz Extracelular/genética , Matriz Extracelular/patologia , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Técnicas de Cultura de Órgãos , Proteína Quinase C/metabolismo , Ratos Wistar , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 40(6): 1559-1573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32321307

RESUMO

OBJECTIVE: Excessive prostaglandin E2 production is a hallmark of abdominal aortic aneurysm (AAA). Enhanced expression of prostaglandin E2 receptor EP4 (prostaglandin E receptor 4) in vascular smooth muscle cells (VSMCs) has been demonstrated in human AAAs. Although moderate expression of EP4 contributes to vascular homeostasis, the roles of excessive EP4 in vascular pathology remain uncertain. We aimed to investigate whether EP4 overexpression in VSMCs exacerbates AAAs. Approach and Results: We constructed mice with EP4 overexpressed selectively in VSMCs under an SM22α promoter (EP4-Tg). Most EP4-Tg mice died within 2 weeks of Ang II (angiotensin II) infusion due to AAA, while nontransgenic mice given Ang II displayed no overt phenotype. EP4-Tg developed much larger AAAs than nontransgenic mice after periaortic CaCl2 application. In contrast, EP4fl/+;SM22-Cre;ApoE-/- and EP4fl/+;SM22-Cre mice, which are EP4 heterozygous knockout in VSMCs, rarely exhibited AAA after Ang II or CaCl2 treatment, respectively. In Ang II-infused EP4-Tg aorta, Ly6Chi inflammatory monocyte/macrophage infiltration and MMP-9 (matrix metalloprotease-9) activation were enhanced. An unbiased analysis revealed that EP4 stimulation positively regulated the genes binding cytokine receptors in VSMCs, in which IL (interleukin)-6 was the most strongly upregulated. In VSMCs of EP4-Tg and human AAAs, EP4 stimulation caused marked IL-6 production via TAK1 (transforming growth factor-ß-activated kinase 1), NF-κB (nuclear factor-kappa B), JNK (c-Jun N-terminal kinase), and p38. Inhibition of IL-6 prevented Ang II-induced AAA formation in EP4-Tg. In addition, EP4 stimulation decreased elastin/collagen cross-linking protein LOX (lysyl oxidase) in both human and mouse VSMCs. CONCLUSIONS: Dysregulated EP4 overexpression in VSMCs promotes inflammatory monocyte/macrophage infiltration and attenuates elastin/collagen fiber formation, leading to AAA exacerbation.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Inflamação/etiologia , Músculo Liso Vascular/metabolismo , Receptores de Prostaglandina E Subtipo EP4/fisiologia , Transdução de Sinais/fisiologia , Angiotensina II/administração & dosagem , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aneurisma da Aorta Abdominal/patologia , Cloreto de Cálcio/administração & dosagem , Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Humanos , Interleucina-6/genética , Macrófagos/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Camundongos Transgênicos , Monócitos/patologia , Músculo Liso Vascular/química , Miócitos de Músculo Liso/metabolismo , Proteína-Lisina 6-Oxidase/análise , Proteína-Lisina 6-Oxidase/genética , Receptores de Citocinas/genética , Receptores de Prostaglandina E Subtipo EP4/genética
11.
Artif Organs ; 45(8): 919-932, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33539557

RESUMO

Tissue-engineered vascular grafts (TEVGs) are in urgent demand for both adult and pediatric patients. Although several approaches have utilized vascular smooth muscle cells (SMCs) and endothelial cells as cell sources for TEVGs, these cell sources have a limited proliferative capacity that results in an inability to reconstitute neotissues. Skeletal myoblasts are attractive cell sources as they possess high proliferative capacity, and they are already being tested in clinical trials for patients with ischemic cardiomyopathy. Our previous study demonstrated that periodic hydrostatic pressurization (PHP) promoted fibronectin fibrillogenesis in vascular SMCs, and that PHP-induced extracellular matrix (ECM) arrangements enabled the fabrication of implantable arterial grafts derived from SMCs without using a scaffold material. We assessed the molecular response of human skeletal myoblasts to PHP exposure, and aimed to fabricate arterial grafts from the myoblasts by exposure to PHP. To examine the PHP-response genes, human skeletal myoblasts were subjected to bulk RNA-sequencing after PHP exposure. Gene-set enrichment analysis revealed significant positive correlations between PHP exposure and vascular development-related genes. Real-time polymerase chain reaction (RT-PCR) demonstrated that PHP significantly upregulated collagen and elastic fiber formation-related gene expression, such as fibronectin, lysyl oxidase, collagen type I α1, collagen type IV α1, and tropoelastin. Based on these findings showing the potential role of PHP in vessel formation, we fabricated arterial grafts by repeated cell seeding and exposure to PHP every 24 hours. The resultant 15-layered myoblast grafts had high collagen content, which provided a tensile rupture strength of 899 ± 104 mm Hg. Human skeletal myoblast grafts were implanted as patch grafts in the aorta of immunosuppressed rats and found to be endothelialized and completely patent until the endpoint of 60 postoperative days. Implanted human myoblasts were gradually replaced by host-derived cells, which successfully formed vascular neotissues with layered elastic fibers. These findings suggest that human skeletal myoblasts have the potential to be a feasible cell source for scaffold-free implantable arterial grafts under PHP culture conditions.


Assuntos
Prótese Vascular , Pressão Hidrostática , Mioblastos Esqueléticos , Animais , Células Cultivadas , Criança , Colágeno/metabolismo , Ecocardiografia Doppler de Pulso , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Nus , Resistência à Tração
12.
Gan To Kagaku Ryoho ; 48(5): 681-683, 2021 May.
Artigo em Japonês | MEDLINE | ID: mdl-34006713

RESUMO

An 86‒year‒old man with chronic kidney disease underwent surgical resection for combined large‒cell neuroendocrine carcinoma of the left lower lobe of the lung(pT2aN1M0, stage ⅡB). Five months later, multiple liver and bone metastases and mediastinal lymph node recurrence were detected. After 9 courses of amrubicin monotherapy(32 mg/m2 for 3 consecutive days), his tumor marker levels normalized, and radiological examination revealed a complete tumor response. Adverse events occurred, but they were tolerable except a decrease in the neutrophil count. The patient remained in good condition for several months but died of tumor relapse 22 months after the initial recurrence. Amrubicin monotherapy was considered to be one of the treatment choices for recurrent large‒cell neuroendocrine carcinoma of the lung in elderly patients.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Idoso , Idoso de 80 Anos ou mais , Antraciclinas , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/cirurgia , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico
13.
Cancer Sci ; 111(1): 160-174, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31755615

RESUMO

The EP4 prostanoid receptors are one of four receptor subtypes for prostaglandin E2 (PGE2 ). Therefore, EP4 may play an important role in cancer progression. However, little information is available regarding their function per se, including migration and the cellular signaling pathway of EP4 in oral cancer. First, we found that mRNA and protein expression of EP4 was abundantly expressed in human-derived tongue squamous cell carcinoma cell lines HSC-3 and OSC-19. The EP4 agonist (ONO-AE1-437) significantly promoted cell migration in HSC-3 cells. In contrast, knockdown of EP4 reduced cell migration. Furthermore, we confirmed that knockdown of EP4 suppressed metastasis of oral cancer cells in the lungs of mice in vivo. Therefore, we focused on the mechanism of migration/metastasis in EP4 signaling. Interestingly, EP4 agonist significantly induced intracellular Ca2+ elevation not in only oral cancer cells but also in other cells, including normal cells. Furthermore, we found that EP4 activated PI3K and induced Ca2+ influx through Orai1 without activation of store depletion and stromal interaction molecule 1 (STIM1). Immunoprecipitation showed that EP4 formed complexes with Orai1 and TRPC1, but not with STIM. Moreover, the EP4 agonist ONO-AE1-437 phosphorylated ERK and activated MMP-2 and MMP-9. Knockdown of Orai1 negated EP4 agonist-induced ERK phosphorylation. Taken together, our data suggested that EP4 activated PI3K and then induced Ca2+ influx from the extracellular space through Orai1, resulting in ERK phosphorylation and promoting cell migration. Migration is regulated by EP4/PI3K/Orai1 signaling in oral cancer.


Assuntos
Movimento Celular/fisiologia , Proteína ORAI1/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Cálcio/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Fosforilação/fisiologia , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Língua/metabolismo
14.
Jpn J Clin Oncol ; 50(2): 198-205, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31917421

RESUMO

INTRODUCTION: Acute exacerbation of interstitial pneumonia (AE-IP) is a lethal complication after lung surgery. We conducted a prospective, multi-institutional phase II trial to assess the efficacy and safety of prophylactic measures. METHOD: Patients with lung cancer with dorsal subpleural fibrotic changes occupying three or more segments of both lower lobes and planned anatomical lung resection were enrolled. Prior to surgery, patients received a 125-mg bolus injection of methylprednisolone and continuous intravenous infusion of sivelestat sodium hydrate (sivelestat) for 2 days. RESULTS: Sixty-nine patients were analysed. Preoperative high-resolution computed tomography (HRCT) showed 37 (53.6%) cases presented with usual interstitial pneumonia (UIP) and possible UIP pattern. There were 60 lobectomies and 9 segmentectomies. Thirty-eight cases were in clinical stage I. No adverse events associated with prophylaxis were observed. There were four cases of AE-IP (5.8%), higher than the expected 2.0%. Three of the four cases showed inconsistencies with the UIP pattern in preoperative HRCT and were pathologically diagnosed as UIP. All patients died of respiratory failure. Overall, 89.9% were diagnosed as idiopathic interstitial pneumonias; UIP was found in 48 patients (69.6%). Severe post-operative complications occurred in 11.6% of the cases. There were 35 deaths, 17 cases of lung cancer and 11 cases related to interstitial pneumonias. The overall survival rate at 3 years was 41.8% of the total and 47.2% of cases with clinical stage I. CONCLUSIONS: Perioperative use of sivelestat and low-dose methylprednisolone in patients with anatomical lung resection was safe but did not prove to be a prophylactic effect for AE-IP.


Assuntos
Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/cirurgia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Idoso , Anti-Inflamatórios/uso terapêutico , Feminino , Glicina/análogos & derivados , Glicina/uso terapêutico , Humanos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/cirurgia , Doenças Pulmonares Intersticiais/patologia , Neoplasias Pulmonares/patologia , Masculino , Metilprednisolona/uso terapêutico , Complicações Pós-Operatórias/mortalidade , Complicações Pós-Operatórias/patologia , Complicações Pós-Operatórias/fisiopatologia , Cuidados Pré-Operatórios , Estudos Prospectivos , Sulfonamidas/uso terapêutico , Taxa de Sobrevida , Exacerbação dos Sintomas
15.
J Biol Chem ; 293(35): 13707-13716, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30002123

RESUMO

The build-up of diversified and tissue-specific assemblies of extracellular matrix (ECM) proteins depends on secreted and cell surface-located molecular arrays that coordinate ECM proteins into discrete designs. The family of small leucine-rich proteins (SLRPs) associates with and dictates the structure of fibrillar collagens, which form the backbone of most ECM types. However, whether SLRPs form complexes with proteins other than collagens is unclear. Here, we demonstrate that heat shock protein 47 (Hsp47), a well-established endoplasmic reticulum-resident collagen chaperone, also binds the SLRPs decorin, lumican, and fibromodulin with affinities comparable with that in the Hsp47-type I collagen interaction. Furthermore, we show that a lack of Hsp47 inhibits the cellular secretion of decorin and lumican. Our results expand the understanding of the concerted molecular interactions that control the secretion and organization of a functional collagenous ECM.


Assuntos
Colágeno Tipo I/metabolismo , Decorina/metabolismo , Fibromodulina/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Lumicana/metabolismo , Mapas de Interação de Proteínas , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Células NIH 3T3
16.
Cancer Sci ; 110(1): 356-365, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375142

RESUMO

We previously identified a novel nanomagnetic particle, N,N'-bis(salicylidene)ethylenediamine iron [Fe(Salen)]. Fe(Salen) not only shows antitumor effects but also magnetic properties. We found that Fe(Salen) can be used for magnet-guided drug delivery and visualization of accumulated drug by magnetic resonance imaging (MRI) because of its magnetism. In addition, Fe(Salen) can generate heat by itself when exposed to an alternating current magnetic field (AMF), resulting in a hyperthermia effect. Herein, we partly elucidated the antitumor mechanism of Fe(Salen) and carried out an i.v. repeated dose toxicity study to decide the therapeutic amount. Furthermore, we evaluated the antitumor effect of selective intra-arterial injection or i.v. injection of Fe(Salen) by catheter and the hyperthermia effect of Fe(Salen) when exposed to AMF in vivo. We used a rabbit model grafted with VX2 cells (rabbit squamous cell carcinoma) on the right leg. Intra-arterial injection of Fe(Salen) showed a greater antitumor effect than did i.v. injection. The combination of Fe(Salen) intra-arterial injection and AMF exposure showed a greater antitumor effect than did either Fe(Salen) or methotrexate (MTX) without AMF exposure, suggesting that AMF exposure greatly enhanced the antitumor effect of Fe(Salen) by arterial injection by catheter. This is the first report that the effectiveness of Fe(Salen) was evaluated in the point of administration route; that is, selective intra-arterial injection by catheter. Taken together, these results indicate a new administration route; that is, selective arterial injection of Fe(Salen) by catheter, and the development of a new strategy of simultaneous hyperthermia-chemotherapy in the future.


Assuntos
Carcinoma de Células Escamosas/terapia , Neoplasias Femorais/terapia , Hipertermia Induzida/métodos , Compostos de Ferro/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Injeções Intra-Arteriais , Injeções Intravenosas , Compostos de Ferro/farmacologia , Campos Magnéticos , Masculino , Metotrexato/administração & dosagem , Metotrexato/farmacologia , Coelhos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Circ J ; 83(3): 654-661, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30726804

RESUMO

BACKGROUND: Antenatal betamethasone (BMZ) is a standard therapy for reducing respiratory distress syndrome in preterm infants. Recently, some reports have indicated that BMZ promotes ductus arteriosus (DA) closure. DA closure requires morphological remodeling; that is, intimal thickening (IT) formation; however, the role of BMZ in IT formation has not yet been reported. Methods and Results: First, DNA microarray analysis using smooth muscle cells (SMCs) of rat preterm DA on gestational day 20 (pDASMCs) stimulated with BMZ was performed. Among 58,717 probe sets, ADP-ribosyltransferase 3 (Art3) was markedly increased by BMZ stimulation. Quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed the BMZ-induced increase of Art3 in pDASMCs, but not in aortic SMCs. Immunocytochemistry showed that BMZ stimulation increased lamellipodia formation. BMZ significantly increased total paxillin protein expression and the ratio of phosphorylated to total paxillin. A scratch assay demonstrated that BMZ stimulation promoted pDASMC migration, which was attenuated byArt3-targeted siRNAs transfection. pDASMC proliferation was not promoted by BMZ, which was analyzed by a 5'-bromo-2'-deoxyuridine (BrdU) assay. Whether BMZ increased IT formation in vivo was examined. BMZ or saline was administered intravenously to maternal rats on gestational days 18 and 19, and DA tissues were obtained on gestational day 20. The ratio of IT to tunica media was significantly higher in the BMZ-treated group. CONCLUSIONS: These data suggest that antenatal BMZ administration promotes DA IT through Art3-mediated DASMC migration.


Assuntos
Betametasona/farmacologia , Canal Arterial/efeitos dos fármacos , Túnica Íntima/efeitos dos fármacos , ADP Ribose Transferases/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Canal Arterial/patologia , Feminino , Miócitos de Músculo Liso/metabolismo , Gravidez , Ratos
18.
Circ J ; 83(2): 295-303, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30518738

RESUMO

BACKGROUND: It has been suggested that protein directly activated by cAMP (Epac), one of the downstream signaling molecules of ß-adrenergic receptor (ß-AR), may be an effective target for the treatment of arrhythmia. However, there have been no reports on the anti-arrhythmic effects or cardiac side-effects of Epac1 inhibitors in vivo. Methods and Results: In this study, the roles of Epac1 in the development of atrial and ventricular arrhythmias are examined. In addition, we examined the usefulness of CE3F4, an Epac1-selective inhibitor, in the treatment of the arrhythmias in mice. In Epac1 knockout (Epac1-KO) mice, the duration of atrial fibrillation (AF) was shorter than in wild-type mice. In calsequestrin2 knockout mice, Epac1 deficiency resulted in a reduction of ventricular arrhythmia. In both atrial and ventricular myocytes, sarcoplasmic reticulum (SR) Ca2+ leak, a major trigger of arrhythmias, and spontaneous SR Ca2+ release (SCR) were attenuated in Epac1-KO mice. Consistently, CE3F4 treatment significantly prevented AF and ventricular arrhythmia in mice. In addition, the SR Ca2+ leak and SCR were significantly inhibited by CE3F4 treatment in both atrial and ventricular myocytes. Importantly, cardiac function was not significantly affected by a dosage of CE3F4 sufficient to exert anti-arrhythmic effects. CONCLUSIONS: These findings indicated that Epac1 is involved in the development of atrial and ventricular arrhythmias. CE3F4, an Epac1-selective inhibitor, prevented atrial and ventricular arrhythmias in mice.


Assuntos
Fibrilação Atrial/prevenção & controle , AMP Cíclico/antagonistas & inibidores , Fibrilação Ventricular/prevenção & controle , Animais , Fibrilação Atrial/etiologia , Cálcio/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Camundongos , Camundongos Knockout , Quinolinas/uso terapêutico , Retículo Sarcoplasmático/metabolismo , Fibrilação Ventricular/etiologia
19.
Artif Organs ; 43(6): 577-583, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30488514

RESUMO

Although the efficacy of external stents for vein grafts in coronary artery bypass grafting has been recognized, the ideal diameter and material of the stent remain controversial. We created a new external stent made of soft polyester mesh and performed an animal experiment using canines. Bilateral saphenous vein grafts were interposed in the bilateral common carotid artery of 10 beagles. The grafts in the left carotid artery were designated as the control group, and those in the right rolled by a soft polyester mesh external stent were designated as mesh group. Two of the 10 animals were sacrificed due to severe wound infection. The other eight were observed by echography for 6 months, and then grafts were extracted and thickness of the neointima of the grafts was measured. The control group showed 146% ± 26% postoperative enlargement of the internal diameter of the vein grafts after 6 months, whereas the mesh group showed only 115% ± 15% after the same duration (P = 0.0003). The median thickness of the neointima in the mesh group (170 µm [range: 150-190]) was significantly thinner than that in the control group (260 µm [range: 220-310], P < 0.0001). Some degree of correlation between the thickness of neointima and proportion of enlargement was noted (r = 0.518, P = 0.0024). A soft polyester mesh external stent for vein grafts successfully suppressed the enlargement of the vein grafts and thickness of the neointima after 6 months.


Assuntos
Materiais Biocompatíveis/química , Hiperplasia/prevenção & controle , Neointima/prevenção & controle , Poliésteres/química , Veia Safena/patologia , Stents , Animais , Cães , Feminino , Hiperplasia/etiologia , Hiperplasia/patologia , Neointima/etiologia , Neointima/patologia , Stents/efeitos adversos , Túnica Íntima/patologia , Enxerto Vascular/efeitos adversos
20.
Proc Natl Acad Sci U S A ; 113(41): E6036-E6044, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27679847

RESUMO

Extracellular matrix (ECM) proteins are biosynthesized in the rough endoplasmic reticulum (rER) and transported via the Golgi apparatus to the extracellular space. The coat protein complex II (COPII) transport vesicles are approximately 60-90 nm in diameter. However, several ECM molecules are much larger, up to several hundreds of nanometers. Therefore, special COPII vesicles are required to coat and transport these molecules. Transmembrane Protein Transport and Golgi Organization 1 (TANGO1) facilitates loading of collagens into special vesicles. The Src homology 3 (SH3) domain of TANGO1 was proposed to recognize collagen molecules, but how the SH3 domain recognizes various types of collagen is not understood. Moreover, how are large noncollagenous ECM molecules transported from the rER to the Golgi? Here we identify heat shock protein (Hsp) 47 as a guide molecule directing collagens to special vesicles by interacting with the SH3 domain of TANGO1. We also consider whether the collagen secretory model applies to other large ECM molecules.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Matriz Extracelular , Fibrilina-1/metabolismo , Expressão Gênica , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Espaço Intracelular/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Recombinantes , Domínios de Homologia de src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA