Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396722

RESUMO

Brain metastases represent a significant clinical challenge in the treatment of non-small-cell lung cancer (NSCLC), often leading to a severe decline in patient prognosis and survival. Recent advances in imaging and systemic treatments have increased the detection rates of brain metastases, yet clinical outcomes remain dismal due to the complexity of the metastatic tumor microenvironment (TME) and the lack of specific biomarkers for early detection and targeted therapy. The intricate interplay between NSCLC tumor cells and the surrounding TME in brain metastases is pivotal, influencing tumor progression, immune evasion, and response to therapy. This underscores the necessity for a deeper understanding of the molecular underpinnings of brain metastases, tumor microenvironment, and the identification of actionable biomarkers that can inform multimodal treatment approaches. The goal of this review is to synthesize current insights into the TME and elucidate molecular mechanisms in NSCLC brain metastases. Furthermore, we will explore the promising horizon of emerging biomarkers, both tissue- and liquid-based, that hold the potential to radically transform the treatment strategies and the enhancement of patient outcomes.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Microambiente Tumoral , Biomarcadores Tumorais , Neoplasias Encefálicas/patologia
2.
Cancer Cytopathol ; 131(9): 561-573, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37358142

RESUMO

BACKGROUND: Urine cytology is generally considered the primary approach for screening for recurrence of bladder cancer. However, it is currently unclear how best to use cytological examinations for assessment and early detection of recurrence, beyond identifying a positive finding that requires more invasive methods to confirm recurrence and decide on therapeutic options. Because screening programs are frequent, and can be burdensome, finding quantitative means to reduce this burden for patients, cytopathologists, and urologists is an important endeavor and can improve both the efficiency and reliability of findings. Additionally, identifying ways to risk-stratify patients is crucial for improving quality of life while reducing the risk of future recurrence or progression of the cancer. METHODS: In this study, a computational machine learning tool, AutoParis-X, was leveraged to extract imaging features from urine cytology examinations longitudinally to study the predictive potential of urine cytology for assessing recurrence risk. This study examined how the significance of imaging predictors changes over time before and after surgery to determine which predictors and time periods are most relevant for assessing recurrence risk. RESULTS: Results indicate that imaging predictors extracted using AutoParis-X can predict recurrence as well or better than traditional cytological/histological assessments alone and that the predictiveness of these features is variable across time, with key differences in overall specimen atypia identified immediately before tumor recurrence. CONCLUSIONS: Further research will clarify how computational methods can be effectively used in high-volume screening programs to improve recurrence detection and complement traditional modes of assessment.


Assuntos
Citologia , Neoplasias da Bexiga Urinária , Humanos , Reprodutibilidade dos Testes , Qualidade de Vida , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/patologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , Aprendizado de Máquina , Urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA