Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 15(8): 503-8, 2014 08.
Artigo em Inglês | MEDLINE | ID: mdl-25027653

RESUMO

Ubiquitylation is a versatile post-translational modification. Met1-linked linear ubiquitin chains are involved in nuclear factor-κB signalling and cell death, and dysfunctions in linear ubiquitylation underlie chronic inflammation. Recent identification of deubiquitylating enzymes and binding domains that are specific for linear ubiquitin chains suggests new physiological roles for linear ubiquitin chains. Moreover, the ligase required for linear ubiquitylation has a crucial role in the pathogenesis of some malignancies. Structural and functional analyses of the conjugation and deconjugation of linear ubiquitin chains have enabled the development of new probes to study the roles of linear chain ubiquitylation.


Assuntos
NF-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Animais , Morte Celular/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais/fisiologia , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
2.
J Immunol ; 211(12): 1823-1834, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902285

RESUMO

Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.


Assuntos
Infecções por Enterobacteriaceae , Imunidade Inata , Criança , Humanos , Animais , Camundongos , Citrobacter rodentium/fisiologia , Ligases , Linfócitos/patologia , Colo/patologia , Inflamação/patologia , Diarreia/patologia , Ubiquitinas , Camundongos Endogâmicos C57BL
3.
J Biol Chem ; 299(5): 104701, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059186

RESUMO

To ensure proper utilization of iron and avoid its toxicity, cells are equipped with iron-sensing proteins to maintain cellular iron homeostasis. We showed previously that nuclear receptor coactivator 4 (NCOA4), a ferritin-specific autophagy adapter, intricately regulates the fate of ferritin; upon binding to Fe3+, NCOA4 forms insoluble condensates and regulates ferritin autophagy in iron-replete conditions. Here, we demonstrate an additional iron-sensing mechanism of NCOA4. Our results indicate that the insertion of an iron-sulfur (Fe-S) cluster enables preferential recognition of NCOA4 by the HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) ubiquitin ligase in iron-replete conditions, resulting in degradation by the proteasome and subsequent inhibition of ferritinophagy. We also found that both condensation and ubiquitin-mediated degradation of NCOA4 can occur in the same cell, and the cellular oxygen tension determines the selection of these pathways. Fe-S cluster-mediated degradation of NCOA4 is enhanced under hypoxia, whereas NCOA4 forms condensates and degrades ferritin at higher oxygen levels. Considering the involvement of iron in oxygen handling, our findings demonstrate that the NCOA4-ferritin axis is another layer of cellular iron regulation in response to oxygen levels.


Assuntos
Ferro , Oxigênio , Ferro/metabolismo , Oxigênio/metabolismo , Coativadores de Receptor Nuclear/genética , Ferritinas/metabolismo , Fatores de Transcrição/metabolismo , Homeostase , Ubiquitinas/metabolismo , Autofagia
4.
J Biol Chem ; 299(9): 105165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595872

RESUMO

Attachment of polyubiquitin (poly-Ub) chains to proteins is a major posttranslational modification in eukaryotes. Linear ubiquitin chain assembly complex, consisting of HOIP (HOIL-1-interacting protein), HOIL-1L (heme-oxidized IRP2 Ub ligase 1), and SHARPIN (Shank-associated RH domain-interacting protein), specifically synthesizes "head-to-tail" poly-Ub chains, which are linked via the N-terminal methionine α-amino and C-terminal carboxylate of adjacent Ub units and are thus commonly called "linear" poly-Ub chains. Linear ubiquitin chain assembly complex-assembled linear poly-Ub chains play key roles in immune signaling and suppression of cell death and have been associated with immune diseases and cancer; HOIL-1L is one of the proteins known to selectively bind linear poly-Ub via its Npl4 zinc finger (NZF) domain. Although the structure of the bound form of the HOIL-1L NZF domain with linear di-Ub is known, several aspects of the recognition specificity remain unexplained. Here, we show using NMR and orthogonal biophysical methods, how the NZF domain evolves from a free to the specific linear di-Ub-bound state while rejecting other potential Ub species after weak initial binding. The solution structure of the free NZF domain revealed changes in conformational stability upon linear Ub binding, and interactions between the NZF core and tail revealed conserved electrostatic contacts, which were sensitive to charge modulation at a reported phosphorylation site: threonine-207. Phosphomimetic mutations reduced linear Ub affinity by weakening the integrity of the linear di-Ub-bound conformation. The described molecular determinants of linear di-Ub binding provide insight into the dynamic aspects of the Ub code and the NZF domain's role in full-length HOIL-1L.


Assuntos
Ubiquitina , Ubiquitinas , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Conformação Molecular , Dedos de Zinco , Ubiquitinação
5.
Acta Neuropathol ; 147(1): 46, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411740

RESUMO

At least five enzymes including three E3 ubiquitin ligases are dedicated to glycogen's spherical structure. Absence of any reverts glycogen to a structure resembling amylopectin of the plant kingdom. This amylopectinosis (polyglucosan body formation) causes fatal neurological diseases including adult polyglucosan body disease (APBD) due to glycogen branching enzyme deficiency, Lafora disease (LD) due to deficiencies of the laforin glycogen phosphatase or the malin E3 ubiquitin ligase and type 1 polyglucosan body myopathy (PGBM1) due to RBCK1 E3 ubiquitin ligase deficiency. Little is known about these enzymes' functions in glycogen structuring. Toward understanding these functions, we undertake a comparative murine study of the amylopectinoses of APBD, LD and PGBM1. We discover that in skeletal muscle, polyglucosan bodies form as two main types, small and multitudinous ('pebbles') or giant and single ('boulders'), and that this is primarily determined by the myofiber types in which they form, 'pebbles' in glycolytic and 'boulders' in oxidative fibers. This pattern recapitulates what is known in the brain in LD, innumerable dust-like in astrocytes and single giant sized in neurons. We also show that oxidative myofibers are relatively protected against amylopectinosis, in part through highly increased glycogen branching enzyme expression. We present evidence of polyglucosan body size-dependent cell necrosis. We show that sex influences amylopectinosis in genotype, brain region and myofiber-type-specific fashion. RBCK1 is a component of the linear ubiquitin chain assembly complex (LUBAC), the only known cellular machinery for head-to-tail linear ubiquitination critical to numerous cellular pathways. We show that the amylopectinosis of RBCK1 deficiency is not due to loss of linear ubiquitination, and that another function of RBCK1 or LUBAC must exist and operate in the shaping of glycogen. This work opens multiple new avenues toward understanding the structural determinants of the mammalian carbohydrate reservoir critical to neurologic and neuromuscular function and disease.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Depósito de Glicogênio , Doenças do Sistema Nervoso , Animais , Camundongos , Glicogênio , Ubiquitina-Proteína Ligases , Ubiquitinas , Mamíferos
6.
Int Immunol ; 35(1): 19-25, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36149813

RESUMO

Polyubiquitination is a post-translational modification involved in a wide range of immunological events, including inflammatory responses, immune cell differentiation, and development of inflammatory diseases. The versatile functions of polyubiquitination are based on different types of ubiquitin linkage, which enable various UBD (ubiquitin binding domain)-containing adaptor proteins to associate and induce distinct biological outputs. A unique and atypical type of polyubiquitin chain comprising a conjugation between the N-terminal methionine of the proximal ubiquitin moiety and the C-terminal glycine of the distal ubiquitin moiety, referred to as a linear or M1-linked ubiquitin chain, has been studied exclusively within the field of immunology because it is distinct from other polyubiquitin forms: linear ubiquitin chains are generated predominantly by various inflammatory stimulants, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and act as a critical modulator of transient and optimal signal transduction. Moreover, accumulating evidence suggests that linear ubiquitin chains are of physiological significance. Dysregulation of linear ubiquitination triggers chronic inflammation and immunodeficiency via downregulation of linear ubiquitin-dependent nuclear factor-kappa B (NF-κB) signaling and by triggering TNF-α-induced cell death, suggesting that linear ubiquitination is a homeostatic regulator of tissue-specific functions. In this review, we focus on our current understating of the molecular and cellular mechanisms by which linear ubiquitin chains control inflammatory environments. Furthermore, we review the role of linear ubiquitination on T cell development, differentiation, and function, thereby providing insight into its direct association with maintaining the immune system.


Assuntos
Poliubiquitina , Fator de Necrose Tumoral alfa , Poliubiquitina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Homeostase
7.
EMBO Rep ; 23(5): e54278, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318808

RESUMO

Iron is not only essential but also a toxic trace element. Under iron repletion, ferritin maintains cellular iron homeostasis by storing iron to avoid iron toxicity. Under iron depletion, the ferritin-specific autophagy adaptor NCOA4 delivers ferritin to lysosomes via macroautophagy to enable cells to use stored iron. Here, we show that NCOA4 also plays crucial roles in the regulation of ferritin fate under iron repletion. NCOA4 forms insoluble condensates via multivalent interactions generated by the binding of iron to its intrinsically disordered region. This sequesters NCOA4 away from ferritin and allows ferritin accumulation in the early phase of iron repletion. Under prolonged iron repletion, NCOA4 condensates can deliver ferritin to lysosomes via a TAX1BP1-dependent non-canonical autophagy pathway, thereby preventing relative iron deficiency due to excessive iron storage and reduced iron uptake. Together, these observations suggest that the NCOA4-ferritin axis modulates intracellular iron homeostasis in accordance with cellular iron availability.


Assuntos
Ferritinas , Ferro , Autofagia/fisiologia , Ferritinas/genética , Ferritinas/metabolismo , Homeostase , Ferro/metabolismo , Lisossomos/metabolismo , Coativadores de Receptor Nuclear/genética , Fatores de Transcrição/metabolismo
8.
J Pathol ; 259(3): 304-317, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36454102

RESUMO

Disruption of the intestinal epithelial barrier and dysregulation of macrophages are major factors contributing to the pathogenesis of inflammatory bowel diseases (IBDs). Activation of NF-κB and cell death are involved in maintaining intestinal homeostasis in a cell type-dependent manner. Although both are regulated by linear ubiquitin chain assembly complex (LUBAC)-mediated linear ubiquitination, the physiological relevance of linear ubiquitination to intestinal inflammation remains unexplored. Here, we used two experimental mouse models of IBD (intraperitoneal LPS and oral dextran sodium sulfate [DSS] administration) to examine the role of linear ubiquitination in intestinal epithelial cells (IECs) and macrophages during intestinal inflammation. We did this by deleting the linear ubiquitination activity of LUBAC specifically from IECs or macrophages. Upon LPS administration, loss of ligase activity in IECs induced mucosal inflammation and augmented IEC death. LPS-mediated death of LUBAC-defective IECs was triggered by TNF. IEC death was rescued by an anti-TNF antibody, and TNF (but not LPS) induced apoptosis of organoids derived from LUBAC-defective IECs. However, augmented TNF-mediated IEC death did not overtly affect the severity of colitis after DSS administration. By contrast, defective LUBAC ligase activity in macrophages ameliorated DSS-induced colitis by attenuating both infiltration of macrophages and expression of inflammatory cytokines. Decreased production of macrophage chemoattractant MCP-1/CCL2, as well as pro-inflammatory IL-6 and TNF, occurred through impaired activation of NF-κB and ERK via loss of ligase activity in macrophages. Taken together, these results indicate that both intraperitoneal LPS and oral DSS administrations are beneficial for evaluating epithelial integrity under inflammatory conditions, as well as macrophage functions in the event of an epithelial barrier breach. The data clarify the cell-specific roles of linear ubiquitination as a critical regulator of TNF-mediated epithelial integrity and macrophage pro-inflammatory responses during intestinal inflammation. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Colite , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Inibidores do Fator de Necrose Tumoral/efeitos adversos , Inibidores do Fator de Necrose Tumoral/metabolismo , Colite/patologia , Células Epiteliais/patologia , Macrófagos/patologia , Ubiquitinação , Inflamação/patologia , Ligases/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34215698

RESUMO

Mutations in the human peptide:N-glycanase gene (NGLY1), which encodes a cytosolic de-N-glycosylating enzyme, cause a congenital autosomal recessive disorder. In rodents, the loss of Ngly1 results in severe developmental delay or lethality, but the underlying mechanism remains unknown. In this study, we found that deletion of Fbxo6 (also known as Fbs2), which encodes a ubiquitin ligase subunit that recognizes glycoproteins, rescued the lethality-related defects in Ngly1-KO mice. In NGLY1-KO cells, FBS2 overexpression resulted in the substantial inhibition of proteasome activity, causing cytotoxicity. Nuclear factor, erythroid 2-like 1 (NFE2L1, also known as NRF1), an endoplasmic reticulum-associated transcriptional factor involved in expression of proteasome subunits, was also abnormally ubiquitinated by SCFFBS2 in NGLY1-KO cells, resulting in its retention in the cytosol. However, the cytotoxicity caused by FBS2 was restored by the overexpression of "glycan-less" NRF1 mutants, regardless of their transcriptional activity, or by the deletion of NRF1 in NGLY1-KO cells. We conclude that the proteasome dysfunction caused by the accumulation of N-glycoproteins, primarily NRF1, ubiquitinated by SCFFBS2 accounts for the pathogenesis resulting from NGLY1 deficiency.


Assuntos
Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Açúcares/metabolismo , Animais , Comportamento Animal , Morte Celular , Núcleo Celular/metabolismo , Proliferação de Células , Citosol/metabolismo , Células HCT116 , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Atividade Motora , Mutação/genética , Fator 1 Nuclear Respiratório/metabolismo , Polissacarídeos/metabolismo , Transporte Proteico , Ubiquitinação
10.
Brain ; 145(7): 2361-2377, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35084461

RESUMO

Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Lafora , Ubiquitina-Proteína Ligases , Animais , Regulação para Baixo , Glucanos/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Epilepsias Mioclônicas Progressivas , Doenças do Sistema Nervoso , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Blood ; 136(6): 684-697, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32325488

RESUMO

The linear ubiquitin chain assembly complex (LUBAC) is a key regulator of NF-κB signaling. Activating single-nucleotide polymorphisms of HOIP, the catalytic subunit of LUBAC, are enriched in patients with activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), and expression of HOIP, which parallels LUBAC activity, is elevated in ABC-DLBCL samples. Thus, to clarify the precise roles of LUBAC in lymphomagenesis, we generated a mouse model with augmented expression of HOIP in B cells. Interestingly, augmented HOIP expression facilitated DLBCL-like B-cell lymphomagenesis driven by MYD88-activating mutation. The developed lymphoma cells partly shared somatic gene mutations with human DLBCLs, with increased frequency of a typical AID mutation pattern. In vitro analysis revealed that HOIP overexpression protected B cells from DNA damage-induced cell death through NF-κB activation, and analysis of the human DLBCL database showed that expression of HOIP positively correlated with gene signatures representing regulation of apoptosis signaling, as well as NF-κB signaling. These results indicate that HOIP facilitates lymphomagenesis by preventing cell death and augmenting NF-κB signaling, leading to accumulation of AID-mediated mutations. Furthermore, a natural compound that specifically inhibits LUBAC was shown to suppress the tumor growth in a mouse transplantation model. Collectively, our data indicate that LUBAC is crucially involved in B-cell lymphomagenesis through protection against DNA damage-induced cell death and is a suitable therapeutic target for B-cell lymphomas.


Assuntos
Apoptose/genética , Linfócitos B/enzimologia , Transformação Celular Neoplásica/genética , Linfoma Difuso de Grandes Células B/etiologia , Complexos Multiproteicos/fisiologia , Ubiquitina-Proteína Ligases/genética , Animais , Linfócitos B/patologia , Proteínas de Transporte/fisiologia , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/fisiologia , NF-kappa B/metabolismo , Transplante de Neoplasias , Polimorfismo de Nucleotídeo Único , Poliubiquitina/biossíntese , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/fisiologia , Transcriptoma , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação , Ubiquitinas/fisiologia
12.
Biochemistry ; 60(8): 573-583, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33616406

RESUMO

Polyubiquitin is a multifunctional protein tag formed by the covalent conjugation of ubiquitin molecules. Due to the high rigidity of the ubiquitin fold, the ubiquitin moieties in a polyubiquitin chain appear to be structurally equivalent to each other. It is therefore unclear how a specific ubiquitin moiety in a chain may be preferentially recognized by some proteins, such as the kinase PINK1. Here we show that there is structural dynamic heterogeneity in the two ubiquitin moieties of K48-linked diubiquitin by NMR spectroscopic analyses. Our analyses capture subunit-asymmetric structural fluctuations that are not directly related to the closed-to-open transition of the two ubiquitin moieties in diubiquitin. Strikingly, these newly identified heterogeneous structural fluctuations may be linked to an increase in susceptibility to phosphorylation by PINK1. Coupled with the fact that there are almost no differences in static tertiary structure among ubiquitin moieties in a chain, the observed subunit-specific structural fluctuations may be an important factor that distinguishes individual ubiquitin moieties in a chain, thereby aiding both efficiency and specificity in post-translational modifications.


Assuntos
Poliubiquitina/química , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Humanos , Modelos Moleculares , Fosforilação , Poliubiquitina/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Quinases/metabolismo
13.
Protein Expr Purif ; 187: 105953, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390872

RESUMO

The linear ubiquitin chain assembly complex tethering motif (LUBAC-LTM) domain is composed of two different accessory LUBAC components (HOIL-1L and SHARPIN) but folds as a single globular domain. Targeted disruption of the intricate LTM-LTM interaction destabilizes LUBAC in lymphoma cells, thereby attenuating LUBAC stability, which highlights that targeting the interaction between the two LTM motifs is a promising strategy for the development of new agents against cancers that depend on LUBAC activity for their survival. To further screen for small-molecule inhibitors that can selectively disrupt the LTM-LTM interaction, it is necessary to obtain high-purity samples of the LTM domain. Ideally, such a sample would not contain any components other than the LTM itself, so that false positives (molecules binding to other parts of LUBAC) could be eliminated from the screening process. Here we report a simple strategy that enabled successful bacterial production of the isolated LUBAC LTM domain in high yield and at high purity. The strategy combines (1) structural analysis highlighting the possibility of tandem expression in the SHARPINL™ to HOIL-1LL™ direction; (2) bacterial expression downstream of EGFP to efficiently monitor expression and solubility; (3) gentle low-temperature folding using autoinduction. Formation of stably folded LTM was verified by size-exclusion chromatography and heteronuclear NMR spectroscopy. From 200-ml cultures sufficient quantities (~7 mg) of high-purity protein for structural studies could be obtained. The presented strategy will be beneficial for LUBAC LTM-based drug-screening efforts and likely serve as a useful primer for similar cases, i.e., whenever a smaller folded fragment is to be isolated from a larger protein complex for site-specific downstream applications.


Assuntos
Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/química , Ubiquitinas/genética , Sítios de Ligação , Cromatografia em Gel , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Transdução de Sinais , Solubilidade , Temperatura
14.
Proc Jpn Acad Ser B Phys Biol Sci ; 97(3): 120-133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692228

RESUMO

Ubiquitination is a reversible post-translational modification in which ubiquitin chains are conjugated to target proteins to modulate protein function. The type of ubiquitin chain determines the mode of protein regulation. It has been shown that ubiquitin chains are formed via one of seven Lys residues in ubiquitin, and several types of ubiquitin chains are found in cells. We identified a new type of linear ubiquitin chain linked through the N-terminal Met of ubiquitin and assembled by the linear ubiquitin chain assembly complex (LUBAC), which is specific for linear chains. The discovery of linear ubiquitin chains and LUBAC is considered as a paradigm shift in ubiquitin research because linear ubiquitination is exclusive to animals, despite the existence of ubiquitination throughout eukaryotic kingdoms. Linear ubiquitination plays a critical role in immune signaling and cell death regulation. Dysregulation of LUBAC-mediated linear ubiquitination underlies various human diseases, including autoinflammation, autoimmunity, infection, and malignant tumors. This review summarizes the current status of linear ubiquitination research.


Assuntos
Imunidade , Transdução de Sinais , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação
15.
J Immunol ; 200(10): 3438-3449, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29654209

RESUMO

Linear ubiquitin chain assembly complex (LUBAC)-mediated linear polyubiquitin plays crucial roles in thymus-dependent and -independent type II Ab responses and B1 cell development. In this study, we analyzed the role of LUBAC in TLR-mediated B cell responses. A mouse strain in which LUBAC activity was ablated specifically in B cells (B-HOIPΔlinear mice) showed defective Ab responses to a type I thymus-independent Ag, NP-LPS. B cells from B-HOIPΔlinear mice (HOIPΔlinear B cells) underwent massive cell death in response to stimulation of TLR4, but not TLR9. TLR4 stimulation induced caspase-8 activation in HOIPΔlinear B cells; this phenomenon, as well as TLR4-induced cell death, was suppressed by ablation of TRIF, a signal inducer specific for TLR4. In addition, LPS-induced survival, proliferation, and differentiation into Ab-producing cells of HOIPΔlinear B cells were substantially restored by inhibition of caspases together with RIP3 deletion, but not by RIP3 deletion alone, suggesting that LPS stimulation kills HOIPΔlinear B cells by apoptosis elicited via the TRIF pathway. Further examination of the roles of cell death pathways in B-HOIPΔlinear mice revealed that deletion of RIP3 increased the number of B1 cells, particularly B1b cells, in B-HOIPΔlinear mice, indicating that B1b cell homeostasis is controlled via LUBAC-mediated suppression of necroptosis. Taken together, the data show that LUBAC regulates TLR4-mediated B cell responses and B1b cell development and/or maintenance by inhibiting programmed cell death.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/fisiologia , Morte Celular/fisiologia , Receptor 4 Toll-Like/metabolismo , Ubiquitina/metabolismo , Animais , Caspase 8/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Camundongos , Poliubiquitina/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptor Toll-Like 9/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
16.
Proc Natl Acad Sci U S A ; 114(32): 8574-8579, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28743755

RESUMO

Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy.


Assuntos
Autofagia/fisiologia , Glicoproteínas/metabolismo , Lisossomos/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitinação/fisiologia , Glicoproteínas/genética , Células HeLa , Humanos , Lisossomos/genética , Proteínas Ligases SKP Culina F-Box/genética
17.
Proc Natl Acad Sci U S A ; 114(47): E10178-E10186, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109255

RESUMO

Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α1-Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells (CreSPC/HOIL-1Lfl/fl ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α1-Na,K-ATPase construct bearing an S18A (α1-S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α1-S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of CreSPC/HOIL-1Lfl/fl mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.


Assuntos
Proteínas de Transporte/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/patologia , Lesão Pulmonar/patologia , Proteína Quinase C/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Animais , Apoptose , Células COS , Proteínas de Transporte/genética , Hipóxia Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Regulação para Baixo , Endocitose , Células Epiteliais/patologia , Humanos , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Lesão Pulmonar/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Mutação , Fosforilação , Cultura Primária de Células , Proteólise , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/genética
18.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209176

RESUMO

The linear ubiquitin chain assembly complex (LUBAC), composed of heme-oxidized IRP2 ubiquitin ligase 1 (HOIL1), HOIL1-interacting protein (HOIP), and SHANK-associated RH domain-interacting protein (SHARPIN), is a crucial regulator of multiple immune signaling pathways. In humans, HOIL1 or HOIP deficiency is associated with an immune disorder involving autoinflammation, immunodeficiency, and inflammatory bowel disease (IBD)-like symptoms. During viral infection, LUBAC is reported to inhibit the induction of interferon (IFN) by the cytosolic RNA sensor retinoic acid-inducible gene I (RIG-I). Surprisingly, we found that HOIL1 is essential for the induction of both type I and type III IFNs, as well as the phosphorylation of IFN regulatory factor 3 (IRF3), during murine norovirus (MNoV) infection in cultured dendritic cells. The RIG-I-like receptor, melanoma differentiation-associated protein 5 (MDA5), is also required for IFN induction and IRF3 phosphorylation during MNoV infection. Furthermore, HOIL1 and MDA5 were required for IFN induction after Theiler's murine encephalomyelitis virus infection and poly(I·C) transfection, but not Sendai virus or vesicular stomatitis virus infection, indicating that HOIL1 and LUBAC are required selectively for MDA5 signaling. Moreover, Hoil1-/- mice exhibited defective control of acute and persistent murine norovirus infection and defective regulation of MNoV persistence by the microbiome as also observed previously for mice deficient in interferon lambda (IFN-λ) receptor, signal transducer and activator of transcription factor 1 (STAT1), and IRF3. These data indicate that LUBAC plays a critical role in IFN induction to control RNA viruses sensed by MDA5.IMPORTANCE Human noroviruses are a leading cause of gastroenteritis throughout the world but are challenging to study in vivo and in vitro Murine norovirus (MNoV) provides a tractable genetic and small-animal model to study norovirus biology and immune responses. Interferons are critical mediators of antiviral immunity, but excessive expression can dysregulate the immune system. IFN-λ plays an important role at mucosal surfaces, including the gastrointestinal tract, and both IFN-λ and commensal enteric bacteria are important modulators of persistent MNoV infection. LUBAC, of which HOIL1 is a component, is reported to inhibit type I IFN induction after RIG-I stimulation. We show, in contrast, that HOIL1 is critical for type I and III IFN induction during infection with MNoV, a virus that preferentially activates MDA5. Moreover, HOIL1 regulates MNoV infection in vivo These data reveal distinct functions for LUBAC in these closely related signaling pathways and in modulation of IFN expression.


Assuntos
Infecções por Caliciviridae/virologia , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , Norovirus/patogenicidade , Ubiquitina-Proteína Ligases/fisiologia , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/microbiologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Células Dendríticas/virologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Fibroblastos/virologia , Genoma Viral , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Norovirus/genética , Fosforilação , Interferon lambda
19.
PLoS Pathog ; 13(1): e1006162, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103322

RESUMO

The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.


Assuntos
Ativação Enzimática/fisiologia , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Immunoblotting , Imunoprecipitação , Células Jurkat , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Transfecção
20.
Mol Cell ; 41(3): 354-65, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21292167

RESUMO

Upon detection of viral RNA, retinoic acid-inducible gene I (RIG-I) undergoes TRIM25-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that the linear ubiquitin assembly complex (LUBAC), comprised of two RING-IBR-RING (RBR)-containing E3 ligases, HOIL-1L and HOIP, independently targets TRIM25 and RIG-I to effectively suppress virus-induced IFN production. RBR E3 ligase domains of HOIL-1L and HOIP bind and induce proteasomal degradation of TRIM25, whereas the NZF domain of HOIL-1L competes with TRIM25 for RIG-I binding. Consequently, both actions by the HOIL-1L/HOIP LUBAC potently inhibit RIG-I ubiquitination and antiviral activity, but in a mechanistically separate manner. Conversely, the genetic deletion or depletion of HOIL-1L and HOIP robustly enhances virus-induced type I IFN production. Taken together, the HOIL-1L/HOIP LUBAC specifically suppresses RIG-I ubiquitination and activation by inducing TRIM25 degradation and inhibiting TRIM25 interaction with RIG-I, resulting in the comprehensive suppression of the IFN-mediated antiviral signaling pathway.


Assuntos
Interferon Tipo I/metabolismo , Receptores do Ácido Retinoico/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Humanos , Camundongos , Mutação , Receptores do Ácido Retinoico/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA