Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Phys Chem Chem Phys ; 23(6): 3866-3873, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33538733

RESUMO

We have investigated the S adsorption behaviours on Pt (average particle diameter of ∼2.6 nm) and Pt3Co (∼3.0 nm) anode and cathode electrode catalysts in polymer electrolyte fuel cells (PEFCs) under working conditions for the fresh state just after the aging process and also the degraded state after accelerated degradation tests (ADT), by studying near ambient pressure hard X-ray photoelectron spectroscopy (HAXPES). S 1s HAXPES of both the anode and cathode electrodes shows not only the principal S species from the sulfonic acid group (-SO3H) in the Nafion electrolyte but also other characteristic S species such as zero-valent S (S0) adsorbed on the carbon support and anionic S (S2-) adsorbed on the Pt electrode. The S2- species on Pt should be ascribed to S contamination poisoning the Pt catalyst electrode. The S2- species on the cathode can be oxidatively removed by applying a high cathode-anode bias voltage (≥0.8 V) to form SO32-, while at the anode the S2- species cannot be eliminated because of reductive environment in hydrogen gas. The important finding is the difference in S adsorption behaviours between the Pt/C and Pt3Co/C electrodes after ADT. After ADT, the Pt/C anode electrode exhibits much larger S2- adsorption than the Pt3Co/C anode electrode. This indicates that the Pt3Co/C anode is more desirable than the Pt/C one from the viewpoint of S poisoning. The reason for more tolerance of the Pt3Co/C anode catalyst against S poisoning after ADT can be ascribed to the more negative charge of the surface Pt atoms in the Pt3Co/C catalyst than those in the Pt/C one, thus yielding a weaker interaction between the surface Pt and the anionic S species as S2-, SO32-, and SO42-. A similar behaviour was observed also in the cathode catalyst. The present findings will nevertheless provide important information to design novel Pt-based PEFC electrodes with higher performance and longer durability.

2.
Nano Lett ; 20(9): 6255-6262, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32830505

RESUMO

Here, we report that a cationic bimetallic site consisting of one Pd and three Zn atoms (Pd1Zn3) supported on ZnO (Pd1Zn3/ZnO) exhibits an extraordinarily high catalytic activity for the generation of H2 through methanol partial oxidation (MPO) that is 2-3 orders of magnitude higher than that of a metallic Pd-Zn site on Pd-Zn nanoalloy (Pd-Zn/ZnO). Computational studies uncovered that the positively charged Pd atom of the subnanometer Pd1Zn3 bimetallic site largely decreases the activation barrier for dehydrogenation of methanol as compared to a metallic Pd atom of Pd-Zn alloy, thus switching the rate-determining step of MPO from methanol dehydrogenation over a Pd-Zn alloy with high barrier to the O2 dissociation step on a cationic Pd1Zn3 site with a low barrier, which is supported by our kinetics studies. The significantly higher catalytic activity and selectivity for H2 production over a cationic bimetallic site suggest a new approach to design bimetallic catalysts.

3.
Phys Chem Chem Phys ; 22(17): 9424-9437, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314748

RESUMO

The synchronizing measurements of both cyclic voltammograms (CVs) and real-time quick XAFSs (QXAFSs) for Pt/C cathode electrocatalysts in a membrane electrode assembly (MEA) of polymer electrolyte fuel cells (PEFCs) treated by anode-gas exchange (AGEX) and cathode-gas exchange (CGEX) cycles (startup/shutdown conditions of FC vehicles) were performed for the first time to understand the opposite effects of the AGEX and CGEX treatments on the Pt/C performance and durability and also the contradiction between the electrochemical active surface area (ECSA) decrease and the performance increase by CGEX treatment. While the AGEX treatment decreased both the ECSA and performance of MEA Pt/C due to carbon corrosion, it was found that the CGEX treatment decreased the ECSA but increased the Pt/C performance significantly due to high-index (331) facet formation (high-resolution STEM) and hence the suppression of strongly bound Pt-oxide formation at cathode Pt nanoparticle surfaces. Transient QXAFS time-profile analysis for the MEA Pt/C also revealed a direct relationship between the electrochemical performance or durability and transient kinetics of the Pt/C cathode.

4.
Phys Chem Chem Phys ; 22(34): 18919-18931, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32542292

RESUMO

We developed a multi-analysis system that can measure in situ time-resolved quick XAFS (QXAFS) and in situ three-dimensional XAFS-CT spatial imaging in the same area of a cathode electrocatalyst layer in a membrane-electrode assembly (MEA) of a polymer electrolyte fuel cell (PEFC) at the BL36XU beamline of SPring-8. The multi-analysis system also achieves ex situ two-dimensional nano-XAFS/STEM-EDS same-view measurements of a sliced MEA fabricated from a given place in the XAFS-CT imaged area at high spatial resolutions under a water-vapor saturated N2 atmosphere using a same-view SiN membrane cell. In this study, we applied the combination method of time-resolved QXAFS/3D XAFS-CT/2D nano-XAFS/STEM-EDS for the first time for the visualization analysis of the anode-gas exchange (AGEX) (simulation of the start-up/shut-down of PEFC vehicles) degradation process of a PEFC MEA Pt/C cathode. The AGEX cycles bring about serious irreversible degradation of both Pt nanoparticles and carbon support due to a spike-like large voltage increase. We could visualize the three-dimensional distribution and two-dimensional depth map of the amount, oxidation state (valence), Pt2+ elution, detachment, and aggregation of Pt species and the formation of carbon voids, where the change and movement of the Pt species in the cathode catalyst layer during the AGEX cycles did not proceed exceeding the 1 µm region. It is very different from the case of an ADT (an accelerated durability test between 0.6-1.0 VRHE)-degraded MEA. We discuss the spatiotemporal behavior of the AGEX degradation process and the degradation mechanism.

5.
Phys Chem Chem Phys ; 22(34): 18815-18823, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32323675

RESUMO

Extended X-ray absorption fine structure (EXAFS) is a powerful tool to determine the local structure in Pt nanoparticles (NP) on carbon supports, active catalysts for fuel cells. Highly oriented pyrolytic graphite (HOPG) covered with Pt NP gives samples with flat surfaces that allow application of surface science techniques. However, the low concentration of Pt makes it difficult to obtain good quality EXAFS data. We have performed in situ highly sensitive BCLA-empowered Back Illuminated EXAFS (BCLA + BI-EXAFS) measurements on Pt alloy nanoparticles. We obtained high quality Pt L3-edge data. We have devised a novel analytical method (model building analysis) to determine the structure of multi-component nanoparticles from just a single absorption edge. The generation of large numbers of structural models and their comparison with EXAFS fits allows us to determine the structures of Pt-containing nanoparticles, catalysts for the oxygen reduction reaction. Our results show that PtCo, PtCoN and AuPtCoN form a Pt-shell during electrochemical dealloying and that the ORR activity is directly proportional to the Pt-Pt bond length.

6.
Acc Chem Res ; 51(3): 719-727, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29509021

RESUMO

Heterogeneous interfaces play important roles in a variety of functional material systems and technologies, such as catalysis, batteries, and devices. A fundamental understanding of efficient functions at interfaces under realistic conditions is crucial for sophisticated designs of useful material systems and novel devices. X-ray photoelectron spectroscopy is one of the most promising and common methods to investigate such material systems. Although X-ray photoelectron spectroscopy is usually conducted under high vacuum because of the requirement of electron detection with the precise measurement of kinetic energies, extensive efforts have been devoted to the measurements in gaseous environments. Very recently, we have succeeded in measuring X-ray photoelectron spectra under real ambient atmosphere (105 Pa), using synchrotron radiation hard X-rays with the photon energy of 8 keV and the windowless electron spectrometer system. In this Account, the novel useful technique of real ambient pressure hard X-ray photoelectron spectroscopy is reviewed. As examples of (near) ambient pressure hard X-ray photoelectron spectroscopy, hydrogen storage of Pd nanoparticles is at first investigated by recording Pd 3d and valence band spectra under hydrogen atmosphere. The Pd 3d and valence band spectra are found to change rather abruptly depending on the hydrogen pressure, demonstrating a behavior like phase transformation. Subsequently, as a main topic in this Account, we describe investigations of the electronic states of platinum nanoparticles on the cathode electrocatalyst in a polymer electrolyte fuel cell (PEFC) under the voltage operating conditions using the near ambient pressure hard X-ray photoelectron spectroscopic system. The Pt 4f and 3d X-ray photoelectron spectra of the cathode Pt/C catalysts clearly show that the oxidized Pt species is at most divalent and the tetravalent Pt species does not exist on the Pt nanoparticles even at the positive cathode-anode voltage of ∼1.4 V. Although the water oxidation reaction may take place at the potential, such a reaction does not lead to a buildup of detectable tetravalent Pt in the PEFC. The voltage-dependent Pt 3d X-ray photoelectron spectra show a clear hysteresis between the voltage increase and decrease processes. The fraction of oxidized Pt species matched the ratio of surface to total Pt atoms in the nanoparticles, which suggests that Pt oxidation occurs as a reaction event at only the first Pt layer of the Pt nanoparticles and the inner Pt atoms do not participate in the reaction practically. The developed technique is a valuable in situ tool for the investigation of the electronic states of PEFCs and other interesting functional material systems and devices under realistic working conditions.

7.
Chem Rec ; 19(7): 1244-1255, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30203911

RESUMO

Precise control of the three-dimensional (3D) structure of highly dispersed metal species such as metal complexes and clusters attached to an oxide surface has been important for the development of next-generation high-performance heterogeneous catalysts. However, this is not easily achieved for the following reasons. (1) Metal species are easily aggregated on an oxide surface, which makes it difficult to control their size and orientation definitely. (2) Determination of the 3D structure of the metal species on an oxide powder surface is hardly possible. To overcome these difficulties, we have developed the premodified surface method, where prior to metal deposition, the oxide surface is premodified with a functional organic molecule that can strongly coordinate to a metal atom. This method has successfully provided a single metal dispersion on an oxide single-crystal surface with the 3D structure precisely determined by polarization-dependent total reflection fluorescence X-ray absorption fine structure (PTRF-XAFS). Here we describe our recent results on ultra-high dispersions of various metal atoms on TiO2 (110) surfaces premodified with mercapto compounds, and show the possibility of fine tuning and orientation control of the surface metal 3D structures.

8.
Chem Rec ; 19(7): 1337-1353, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30338915

RESUMO

It remains a big challenge to remarkably improve both oxygen reduction reaction (ORR) activity and long-term durability of Pt-M bimetal electrocatalysts simultaneously in the harsh cathode environment toward widespread commercialization of polymer electrolyte fuel cells (PEFC). In this account we found double-promotional effects of carbon micro coil (CMC) support on ORR performance and durability of octahedral Pt3 Ni nanoparticles (Oh Pt3 Ni/CMC). The Oh Pt3 Ni/CMC displayed remarkable improvements of mass activity (MA; 13.6 and 34.1 times) and surface specific activity (SA; 31.3 and 37.0 times) compared to those of benchmark Pt/C (TEC10E20E) and Pt/C (TEC10E50E-HT), respectively. Notably, the Oh Pt3 Ni/CMC revealed a negligible MA loss after 50,000 triangular-wave 1.0-1.5 VRHE (startup/shutdown) load cycles, contrasted to MA losses of 40 % (TEC10E20E) and 21.5 % (TEC10E50E-HT) by only 10,000 load cycles. It was also found that the SA increased exponentially with the decrease in the CO stripping peak potential in a series of Pt-M/carbon (M: Ni and Co), which predicts a maximum SA at the curve asymptote. Key factors for simultaneous improvements of performance and durability of core-shell Pt3 Ni/carbon electrocatalysts toward superior PEFC is also discussed.

9.
Chem Rec ; 19(9): 2069-2081, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31268237

RESUMO

Catalytic benzene C-H activation toward selective phenol synthesis with O2 remains a stimulating challenge to be tackled. Phenol is currently produced industrially by the three-steps cumene process in liquid phase, which is energy-intensive and not environmentally friendly. Hence, there is a strong demand for an alternative gas-phase single-path reaction process. This account documents the pivotal confined single metal ion site platform with a sufficiently large coordination sphere in ß zeolite pores, which promotes the unprecedented catalysis for the selective benzene hydroxylation with O2 under coexisting NH3 by the new inter-ligand concerted mechanism. Among alkali and alkaline-earth metal ions and transition and precious metal ions, single Cs+ and Rb+ sites with ion diameters >0.300 nm in the ß pores exhibited good performances for the direct phenol synthesis in a gas-phase single-path reaction process. The single Cs+ and Rb+ sites that possess neither significant Lewis acidic-basic property nor redox property, cannot activate benzene, O2 , and NH3 , respectively, whereas when they coadsorbed together, the reaction of the inter-coadsorbates on the single alkali-metal ion site proceeds concertedly (the inter-ligand concerted mechanism), bringing about the benzene C-H activation toward phenol synthesis. The NH3 -driven benzene C-H activation with O2 was compared to the switchover of the reaction pathways from the deep oxidation to selective oxidation of benzene by coexisting NH3 on Pt6 metallic cluster/ß and Ni4 O4 oxide cluster/ß. The NH3 -driven selective oxidation mechanism observed with the Cs+ /ß and Rb+ /ß differs from the traditional redox catalysis (Mars-van Krevelen) mechanism, simple Langmuir-Hinshelwood mechanism, and acid-base catalysis mechanism involving clearly defined interaction modes. The present catalysis concept opens a new way for catalytic selective oxidation processes involving direct phenol synthesis.

10.
Chem Rec ; 19(7): 1444-1456, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30908882

RESUMO

We designed and constructed a beamline BL36XU at the 8 GeV synchrotron radiation facility SPring-8 to provide information required for the development of next-generation polymer electrolyte fuel cells (PEFCs) by clarifying the dynamic aspects of structures and electronic states of cathode catalysts under PEFC operating conditions and in the deterioration processes by accelerated durability test protcols. To investigate the mechanism and degradation process for the cathode electrocatalysis in practical PEFCs, we developed advanced time- and spatially-resolved in-situ/operando X-ray absorption fine structure measurement systems and complementary analytical systems (X-ray emission spectroscopy (XES), X-ray diffraction (XRD), X-ray computer tomography (CT) and hard X-ray photoelectron spectroscopy (HAXPES)) and combined them to develop multi-analytical systems at BL36XU. Multi-analytical systems are very powerful for observing spatial-temporal features of the transient processes occurring in complex systems such as PEFCs. This account describes the design, performance, and research results of the BL36XU and multi-analytical in-situ/operando systems.

11.
Chem Rec ; 19(7): 1157-1165, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30088337

RESUMO

Surface fluorescence X-ray absorption fine structure (XAFS) spectroscopy using a Laue-type monochromator has been developed to acquire structural information about metals with a very low concentrate on a flat highly oriented pyrolytic graphite (HOPG) surface in the presence of electrolytes. Generally, surface fluorescence XAFS spectroscopy is hindered by strong scattering from the bulk, which often chokes the pulse counting detector. In this work, we show that a bent crystal Laue analyzer (BCLA) can efficiently remove the scattered X-rays from the bulk even in the presence of solution. We applied the technique to submonolayer (∼1014  atoms cm-2 ) Pt on HOPG and successfully obtained high signal/noise in situ XAFS data in combination with back-illuminated fluorescence XAFS (BI-FXAFS) spectroscopy. This technique allows in situ XAFS measurements of flat electrode surfaces to be performed in the presence of electrolytes.

12.
Phys Chem Chem Phys ; 19(8): 6013-6021, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28184398

RESUMO

We performed in situ hard X-ray photoelectron spectroscopy (HAXPES) measurements of the electronic states of platinum nanoparticles on the cathode electrocatalyst of a polymer electrolyte fuel cell (PEFC) using a near ambient pressure (NAP) HAXPES instrument having an 8 keV excitation source. We successfully observed in situ NAP-HAXPES spectra of the Pt/C cathode catalysts of PEFCs under working conditions involving water, not only for the Pt 3d states with large photoionization cross-sections in the hard X-ray regime but also for the Pt 4f states and the valence band with small photoionization cross-sections. Thus, this setup allowed in situ observation of a variety of hard PEFC systems under operating conditions. The Pt 4f spectra of the Pt/C electrocatalysts in PEFCs clearly showed peaks originating from oxidized Pt(ii) at 1.4 V, which unambiguously shows that Pt(iv) species do not exist on the Pt nanoparticles even at such large positive voltages. The water oxidation reaction might take place at that potential (the standard potential of 1.23 V versus a standard hydrogen electrode) but such a reaction should not lead to a buildup of detectable Pt(iv) species. The voltage-dependent NAP-HAXPES Pt 3d spectra revealed different behaviors with increasing voltage (0.6 → 1.0 V) compared with decreasing voltage (1.0 → 0.6 V), showing a clear hysteresis. Moreover, quantitative peak-fitting analysis showed that the fraction of non-metallic Pt species matched the ratio of the surface to total Pt atoms in the nanoparticles, which suggests that Pt oxidation only takes place at the surface of the Pt nanoparticles on the PEFC cathode, and the inner Pt atoms do not participate in the reaction. In the valence band spectra, the density of electronic states near the Fermi edge reduces with decreasing particle size, indicating an increase in the electrocatalytic activity. Additionally, a change in the valence band structure due to the oxidation of platinum atoms was also observed at large positive voltages. The developed apparatus is a valuable in situ tool for the investigation of the electronic states of PEFC electrocatalysts under working conditions.

13.
Phys Chem Chem Phys ; 19(45): 30798-30803, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29134220

RESUMO

Photoelectron spectroscopy has the advantage of providing electric potentials by non-contact measurements based on the kinetic energy shift in component potential. We performed operando hard X-ray photoelectron spectroscopy (HAXPES) measurements with an 8 keV excitation source to measure the shift in electron kinetic energies as a function of the voltages of all the components at the anode and cathode electrodes of a polymer electrolyte fuel cell (PEFC). At the cathode electrode, when we increase the voltage between the cathode and anode from 0.2 to 1.2 V, the O 1s and F 1s peaks shift to a lower binding energy and the magnitude of the energy shift is equal to the voltage. The Pt 3d and C 1s peaks do not shift with the voltage since platinum nanoparticles and carbon supports at the cathode electrode have ground contact. In contrast to the cathode electrode, the peak shifts of all the components at the anode electrode show the same amount of shift as the voltages. It is clear that the change in the potential difference occurs only in an electrical double layer at the interface between the cathode electrode (Pt/C) and the electrolyte (Nafion and water), and that the anode electrode is in equilibrium as a pseudo-hydrogen electrode. Moreover, the electric potential variation of the cathode electrode in a PEFC under a power generation condition was also directly detected by operando HAXPES.

14.
J Am Chem Soc ; 137(40): 12856-64, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26412503

RESUMO

We have achieved significant improvements for the oxygen reduction reaction activity and durability with new SnO2-nanoislands/Pt3Co/C catalysts in 0.1 M HClO4, which were regulated by a strategic fabrication using a new selective electrochemical Sn deposition method. The nano-SnO2/Pt3Co/C catalysts with Pt/Sn = 4/1, 9/1, 11/1, and 15/1 were characterized by STEM-EDS, XRD, XRF, XPS, in situ XAFS, and electrochemical measurements to have a Pt3Co core/Pt skeleton-skin structure decorated with SnO2 nanoislands at the compressive Pt surface with the defects and dislocations. The high performances of nano-SnO2/Pt3Co/C originate from efficient electronic modification of the Pt skin surface (site 1) by both the Co of the Pt3Co core and surface nano-SnO2 and more from the unique property of the periphery sites of the SnO2 nanoislands at the compressive Pt skeleton-skin surface (more active site 2), which were much more active than expected from the d-band center values. The white line peak intensity of the nano-SnO2/Pt3Co/C revealed no hysteresis in the potential up-down operations between 0.4 and 1.0 V versus RHE, unlike the cases of Pt/C and Pt3Co/C, resulting in the high ORR performance. Here we report development of a new class of cathode catalysts with two different active sites for next-generation polymer electrolyte fuel cells.

15.
Chem Rec ; 19(7): 1156, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31062921
16.
Phys Chem Chem Phys ; 16(21): 10075-87, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24513596

RESUMO

The electrochemical activity and durability of Pt nanoparticles on different kinds of carbon supports in oxygen reduction reactions (ORR) were investigated using rotating disc electrodes (RDE) and the membrane electrode assemblies (MEA) of polymer electrolyte fuel cells (PEFC). The mass activity of Pt/C catalysts (ORR activity per 1 mg of Pt) at the RDE decreased, according to the type of carbon support, in the following order; Ketjenblack (KB) > acetylene black (AB) > graphene > multiwall carbon nanotube (MW-CNT) > carbon black (CB), whereas the average size of the Pt nanoparticles and the surface specific activity (ORR activity per electrochemical surface area) did not vary significantly between these carbon supports. These results indicate that the different mass activities of the Pt/C catalysts may originate from the differences in the fraction of Pt on the carbon supports which is available for utilization. The durability of the MEAs of the top two active catalysts Pt/KB and Pt/AB among the five catalysts was examined based on ORR performance, TEM and in situ XAFS. It was found that the performance of the Pt/KB cathode catalyst in PEFC MEA decreased significantly over 500 accelerated durability test (ADT) cycles, whereas the performance of the Pt/AB cathode catalyst in PEFC MEA did not decrease significantly during 500 ADT cycles, it was also found that the Pt/AB possesses 8 times higher durability compared with the Pt/KB. In situ Pt LIII-edge XAFS data in the ADT cycles and stepwise potential operations revealed the different oxidation-reduction behaviors of the Pt nanoparticles on the KB and AB supports. The Pt/KB was oxidized to form surface PtO layers more easily than the Pt/AB in the increasing potential operation from 0.4 VRHE to 1.4 VRHE, and the surface PtO layers of the Pt/AB were reduced to the metallic Pt state more readily than those of the Pt/KB in the decreasing potential operation from 1.4 VRHE to 0.4 VRHE. The XAFS analysis for the Pt valences and the coordination numbers of Pt-O and Pt-Pt demonstrated that the Pt/AB catalyst is more durable than the Pt/KB catalyst in PEFC MEAs.

17.
Phys Chem Chem Phys ; 16(27): 13748-54, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24788597

RESUMO

We measured the in situ polarization-dependent X-ray absorption fine structure of platinum nanoparticles (PtNPs) deposited on a flat highly oriented pyrolytic graphite (HOPG) substrate under electrochemical conditions using a back-side illumination method. In this method, the thin HOPG substrate with PtNPs deposited on one side was used as a window for incident and fluorescent X-rays, as well as an electrode. A bent crystal Laue analyzer (BCLA) was applied to the extraction of the Pt Lα fluorescent X-ray signals from strong scattered X-rays. Pt L3 edge XAFS spectra were observed for various electrode potentials and polarization directions.

18.
Angew Chem Int Ed Engl ; 53(51): 14110-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25338523

RESUMO

There is limited information on the mechanism for platinum oxidation and dissolution in Pt/C cathode catalyst layers of polymer electrolyte fuel cells (PEFCs) under the operating conditions though these issues should be uncovered for the development of next-generation PEFCs. Pt species in Pt/C cathode catalyst layers are mapped by a XAFS (X-ray absorption fine structure) method and by a quick-XAFS(QXAFS) method. Information on the site-preferential oxidation and leaching of Pt cathode nanoparticles around the cathode boundary and the micro-crack in degraded PEFCs is provided, which is relevant to the origin and mechanism of PEFC degradation.

19.
ACS Nano ; 18(14): 9942-9957, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38552006

RESUMO

Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5%@Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.

20.
Phys Chem Chem Phys ; 15(40): 17208-18, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24013494

RESUMO

We have prepared and characterized a SnO2-decorated Pt-Sn(oxidized)/C cathode catalyst in a polymer electrolyte fuel cell (PEFC). Oxygen reduction reaction (ORR) performance of Pt/C (TEC10E50E) remained almost unchanged or even tended to reduce in repeated I-V load cycles, whereas the I-V load performance of the Pt-Sn(oxidized)/C prepared by controlled oxidation of a Pt-Sn alloy/C sample with the Pt3Sn phase revealed a significant increase with increasing I-V load cycles. The unique increase in the ORR performance of the Pt-Sn(oxidized)/C catalyst was ascribed to a promoting effect of SnO2 nano-islands formed on the surface of Pt3Sn core nanoparticles. Also in a rotating disk electrode (RDE) setup, the mass activity of an oxidized Pt3Sn/C catalyst was initially much lower than that of a Pt/C catalyst, but it increased remarkably after 5000 rectangular durability cycles and became higher than that of the fresh Pt/C. The maximum power density per electrochemical surface area for the Pt-Sn(oxidized)/C catalyst in a PEFC was about 5 times higher than that for the Pt/C catalyst at 0.1-0.8 A cm(-2) of the current density. In situ X-ray absorption near-edge structure (XANES) analysis at the Pt LIII-edge in increasing/decreasing potential operations and at the Sn K-edge in the I-V load cycles revealed a remarkable suppression of Pt oxidation compared with the Pt/C catalyst at higher potentials and no change in the Sn oxidation state, respectively, resulting in higher performance and stability of the Pt-Sn(oxidized)/C catalyst due to the SnO2 nano-islands under the PEFC operation conditions. The SnO2 nano-island decorated Pt-Sn(oxidized)/C catalyst with a Pt3Sn alloy nanostructure is regarded as a promising candidate for a PEFC cathode catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA