Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 611(7934): 115-123, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180795

RESUMO

Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.


Assuntos
Descoberta de Drogas , Predisposição Genética para Doença , AVC Isquêmico , Humanos , Isquemia Encefálica/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , AVC Isquêmico/genética , Terapia de Alvo Molecular , Herança Multifatorial , Europa (Continente)/etnologia , Ásia Oriental/etnologia , África/etnologia
2.
Am J Hum Genet ; 107(4): 612-621, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888428

RESUMO

Hypersensitivity reactions to drugs are often unpredictable and can be life threatening, underscoring a need for understanding their underlying mechanisms and risk factors. The extent to which germline genetic variation influences the risk of commonly reported drug allergies such as penicillin allergy remains largely unknown. We extracted data from the electronic health records of more than 600,000 participants from the UK, Estonian, and Vanderbilt University Medical Center's BioVU biobanks to study the role of genetic variation in the occurrence of self-reported penicillin hypersensitivity reactions. We used imputed SNP to HLA typing data from these cohorts to further fine map the human leukocyte antigen (HLA) association and replicated our results in 23andMe's research cohort involving a total of 1.12 million individuals. Genome-wide meta-analysis of penicillin allergy revealed two loci, including one located in the HLA region on chromosome 6. This signal was further fine-mapped to the HLA-B∗55:01 allele (OR 1.41 95% CI 1.33-1.49, p value 2.04 × 10-31) and confirmed by independent replication in 23andMe's research cohort (OR 1.30 95% CI 1.25-1.34, p value 1.00 × 10-47). The lead SNP was also associated with lower lymphocyte counts and in silico follow-up suggests a potential effect on T-lymphocytes at HLA-B∗55:01. We also observed a significant hit in PTPN22 and the GWAS results correlated with the genetics of rheumatoid arthritis and psoriasis. We present robust evidence for the role of an allele of the major histocompatibility complex (MHC) I gene HLA-B in the occurrence of penicillin allergy.


Assuntos
Artrite Reumatoide/genética , Hipersensibilidade a Drogas/genética , Antígenos HLA-B/genética , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Psoríase/genética , Adulto , Alelos , Artrite Reumatoide/complicações , Artrite Reumatoide/imunologia , Cromossomos Humanos Par 6/química , Hipersensibilidade a Drogas/complicações , Hipersensibilidade a Drogas/etiologia , Hipersensibilidade a Drogas/imunologia , Registros Eletrônicos de Saúde , Europa (Continente) , Feminino , Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Antígenos HLA-B/imunologia , Teste de Histocompatibilidade , Humanos , Masculino , Penicilinas/efeitos adversos , Proteína Tirosina Fosfatase não Receptora Tipo 22/imunologia , Psoríase/complicações , Psoríase/imunologia , Autorrelato , Linfócitos T/imunologia , Linfócitos T/patologia , Estados Unidos
4.
JAMA Netw Open ; 7(5): e2412824, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776079

RESUMO

Importance: Vascular disease is a treatable contributor to dementia risk, but the role of specific markers remains unclear, making prevention strategies uncertain. Objective: To investigate the causal association between white matter hyperintensity (WMH) burden, clinical stroke, blood pressure (BP), and dementia risk, while accounting for potential epidemiologic biases. Design, Setting, and Participants: This study first examined the association of genetically determined WMH burden, stroke, and BP levels with Alzheimer disease (AD) in a 2-sample mendelian randomization (2SMR) framework. Second, using population-based studies (1979-2018) with prospective dementia surveillance, the genetic association of WMH, stroke, and BP with incident all-cause dementia was examined. Data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined WMH burden and BP levels, as well as genetic liability to stroke derived from genome-wide association studies (GWASs) in European ancestry populations. Main Outcomes and Measures: The association of genetic instruments for WMH, stroke, and BP with dementia was studied using GWASs of AD (defined clinically and additionally meta-analyzed including both clinically diagnosed AD and AD defined based on parental history [AD-meta]) for 2SMR and incident all-cause dementia for longitudinal analyses. Results: In 2SMR (summary statistics-based) analyses using AD GWASs with up to 75 024 AD cases (mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women), larger WMH burden showed evidence for a causal association with increased risk of AD (odds ratio [OR], 1.43; 95% CI, 1.10-1.86; P = .007, per unit increase in WMH risk alleles) and AD-meta (OR, 1.19; 95% CI, 1.06-1.34; P = .008), after accounting for pulse pressure for the former. Blood pressure traits showed evidence for a protective association with AD, with evidence for confounding by shared genetic instruments. In the longitudinal (individual-level data) analyses involving 10 699 incident all-cause dementia cases (mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women), no significant association was observed between larger WMH burden and incident all-cause dementia (hazard ratio [HR], 1.02; 95% CI, 1.00-1.04; P = .07). Although all exposures were associated with mortality, with the strongest association observed for systolic BP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10-14), there was no evidence for selective survival bias during follow-up using illness-death models. In secondary analyses using polygenic scores, the association of genetic liability to stroke, but not genetically determined WMH, with dementia outcomes was attenuated after adjusting for interim stroke. Conclusions: These findings suggest that WMH is a primary vascular factor associated with dementia risk, emphasizing its significance in preventive strategies for dementia. Future studies are warranted to examine whether this finding can be generalized to non-European populations.


Assuntos
Pressão Sanguínea , Doenças de Pequenos Vasos Cerebrais , Demência , Humanos , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Feminino , Masculino , Idoso , Demência/genética , Demência/epidemiologia , Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/epidemiologia , Fatores de Risco , Predisposição Genética para Doença , Idoso de 80 Anos ou mais , Estudos Prospectivos
5.
J Psychiatr Res ; 168: 269-278, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37924579

RESUMO

Higher blood pressure levels in patients with depression may be associated with lower adherence to antihypertensive medications (AHMs). Here, we use electronic health record (EHR) data from the Estonian Biobank (EstBB) to investigate the role of lifetime depression in AHM adherence and persistence. We also explore the relationship between antidepressant initiation and intraindividual change in AHM adherence among hypertension (HTN) patients with newly diagnosed depression. Diagnosis and pharmacy refill data were obtained from the National Health Insurance database. Adherence and persistence to AHMs were determined for hypertension (HTN) patients initiating treatment between 2009 and 2017 with a three-year follow-up period. Multivariable regression was used to explore the associations between depression and AHM adherence or persistence, adjusting for sociodemographic, genetic, and health-related factors. A linear mixed-effects model was used to estimate the effect of antidepressant treatment initiation on antihypertensive medication adherence, adjusting for age and sex. We identified 20,724 individuals with newly diagnosed HTN (6294 depression cases and 14,430 controls). Depression was associated with 6% lower probability of AHM adherence (OR = 0.943, 95%CI = 0.909-0.979) and 12% lower odds of AHM persistence (OR = 0.876, 95%CI = 0.821-0.936). Adjusting for sociodemographic, genetic, and health-related factors did not significantly influence these associations. AHM adherence increased 8% six months after initiating antidepressant therapy (N = 132; ß = 0.078; 95%CI = 0.025-0.131). Based on the EHR data on EstBB participants, depression is associated with lower AHM adherence and persistence. Additionally, antidepressant therapy may help improve AHM adherence in patients with depression.


Assuntos
Anti-Hipertensivos , Hipertensão , Humanos , Anti-Hipertensivos/uso terapêutico , Registros Eletrônicos de Saúde , Depressão/tratamento farmacológico , Depressão/epidemiologia , Depressão/complicações , Adesão à Medicação , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hipertensão/complicações , Antidepressivos/uso terapêutico , Estudos Retrospectivos
6.
medRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37790435

RESUMO

Importance: There is increasing recognition that vascular disease, which can be treated, is a key contributor to dementia risk. However, the contribution of specific markers of vascular disease is unclear and, as a consequence, optimal prevention strategies remain unclear. Objective: To disentangle the causal relation of several key vascular traits to dementia risk: (i) white matter hyperintensity (WMH) burden, a highly prevalent imaging marker of covert cerebral small vessel disease (cSVD); (ii) clinical stroke; and (iii) blood pressure (BP), the leading risk factor for cSVD and stroke, for which efficient therapies exist. To account for potential epidemiological biases inherent to late-onset conditions like dementia. Design Setting and Participants: This study first explored the association of genetically determined WMH, BP levels and stroke risk with AD using summary-level data from large genome-wide association studies (GWASs) in a two-sample Mendelian randomization (MR) framework. Second, leveraging individual-level data from large longitudinal population-based cohorts and biobanks with prospective dementia surveillance, the association of weighted genetic risk scores (wGRSs) for WMH, BP, and stroke with incident all-cause-dementia was explored using Cox-proportional hazard and multi-state models. The data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined levels of WMH volume and BP (systolic, diastolic and pulse blood pressures) and genetic liability to stroke. Main outcomes and measures: The summary-level MR analyses focused on the outcomes from GWAS of clinically diagnosed AD (n-cases=21,982) and GWAS additionally including self-reported parental history of dementia as a proxy for AD diagnosis (ADmeta, n-cases=53,042). For the longitudinal analyses, individual-level data of 157,698 participants with 10,699 incident all-cause-dementia were studied, exploring AD, vascular or mixed dementia in secondary analyses. Results: In the two-sample MR analyses, WMH showed strong evidence for a causal association with increased risk of ADmeta (OR, 1.16; 95%CI:1.05-1.28; P=.003) and AD (OR, 1.28; 95%CI:1.07-1.53; P=.008), after accounting for genetically determined pulse pressure for the latter. Genetically predicted BP traits showed evidence for a protective association with both clinically defined AD and ADmeta, with evidence for confounding by shared genetic instruments. In longitudinal analyses the wGRSs for WMH, but not BP or stroke, showed suggestive association with incident all-cause-dementia (HR, 1.02; 95%CI:1.00-1.04; P=.06). BP and stroke wGRSs were strongly associated with mortality but there was no evidence for selective survival bias during follow-up. In secondary analyses, polygenic scores with more liberal instrument definition showed association of both WMH and stroke with all-cause-dementia, AD, and vascular or mixed dementia; associations of stroke, but not WMH, with dementia outcomes were markedly attenuated after adjusting for interim stroke. Conclusion: These findings provide converging evidence that WMH is a leading vascular contributor to dementia risk, which may better capture the brain damage caused by BP (and other etiologies) than BP itself and should be targeted in priority for dementia prevention in the population.

7.
Lancet Reg Health Eur ; 18: 100394, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35505834

RESUMO

Background: The objective of this study was to describe 12-month mortality following SARS-CoV-2 infection compared with a reference population with no history of SARS-CoV-2. Methods: Nationwide cohort study using electronic health care data on SARS-CoV-2 RNA positive cases (n= 66,287) and reference group subjects (n=254,969) with linkage to SARS-CoV-2 testing and death records. Findings: People infected with SARS-COV-2 had more than three times the risk of dying over the following year compared with those who remained uninfected (aHR 3·1, 95%CI 2·9-3·3). Short-term mortality (up to 5 weeks post-infection) was significantly higher among COVID-19 group (1623·0/10 000) than in the reference group (118/10 000). For COVID-19 cases aged 60 years or older, increased mortality persisted until the end of the first year after infection, and was related to increased risk for cardiovascular (aHR 2·1, 95%CI 1·8-2·3), cancer (aHR 1·5, 95%CI 1·2-1·9), respiratory system diseases (aHR 1·9, 95%CI 1·2-3·0), and other causes of death (aHR 1·8, 95%CI 1·4-2·2). Interpretation: Increased risk of death from SARS-CoV-2 is not limited to the acute illness: SARS-CoV-2 infection carries a substantially increased mortality in the following 12 months. This excess death mainly occurs in older people and is driven by broad array of causes of death. Funding: Research was carried out with the support of Estonian Research Council (grants PRG1197, PRG198), European Regional Development Fund (RITA 1/02-120) and European Social Fund via IT Academy program.

8.
HGG Adv ; 3(4): 100133, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36035246

RESUMO

Copy-number variations (CNV) are believed to play an important role in a wide range of complex traits, but discovering such associations remains challenging. While whole-genome sequencing (WGS) is the gold-standard approach for CNV detection, there are several orders of magnitude more samples with available genotyping microarray data. Such array data can be exploited for CNV detection using dedicated software (e.g., PennCNV); however, these calls suffer from elevated false-positive and -negative rates. In this study, we developed a CNV quality score that weights PennCNV calls (pCNVs) based on their likelihood of being true positive. First, we established a measure of pCNV reliability by leveraging evidence from multiple omics data (WGS, transcriptomics, and methylomics) obtained from the same samples. Next, we built a predictor of omics-confirmed pCNVs, termed omics-informed quality score (OQS), using only PennCNV software output parameters. Promisingly, OQS assigned to pCNVs detected in close family members was up to 35% higher than the OQS of pCNVs not carried by other relatives (p < 3.0 × 10-90), outperforming other scores. Finally, in an association study of four anthropometric traits in 89,516 Estonian Biobank samples, the use of OQS led to a relative increase in the trait variance explained by CNVs of up to 56% compared with published quality filtering methods or scores. Overall, we put forward a flexible framework to improve any CNV detection method leveraging multi-omics evidence, applied it to improve PennCNV calls, and demonstrated its utility by improving the statistical power for downstream association analyses.

9.
Sci Adv ; 7(36): eabi6856, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516913

RESUMO

Interindividual variability in drug response constitutes a major concern in pharmacotherapy. While polymorphisms in genes involved in drug disposition have been extensively studied, drug target variability remains underappreciated. By mapping the genomic variability of all human drug target genes onto high-resolution crystal structures of drug target complexes, we identified 1094 variants localized within 6 Å of drug-binding pockets and directly affecting their geometry, topology, or physicochemical properties. We experimentally show that binding site variants affect pharmacodynamics with marked drug- and variant-specific differences. In addition, we demonstrate that a common BCHE variant confers resistance to tacrine and rivastigmine, which can be overcome by the use of derivatives based on squaric acid scaffolds or tryptophan conjugation. These findings underscore the importance of genetic drug target variability and demonstrate that integration of genomic data and structural information can inform personalized drug selection and genetically guided drug development to overcome resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA