Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 29(5): 860-70, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-26999366

RESUMO

Microcystins are potent cyclic heptapeptide toxins found in many freshwater cyanobacteria. Most microcystins contain an α,ß-unsaturated amide that can react with thiol-containing amino acids, peptides, and proteins in vivo and in vitro. While soluble conjugates formed from small peptides can be extracted and analyzed directly by LC-MS, microcystins conjugated to proteins are analyzed after oxidative cleavage of their Adda side chains, but information on which microcystin analogues were present is lost. Observations during the development of thiol-derivatization-based LC-MS methods for microcystin analysis indicated that the reaction of thiols with microcystins was reversible. The kinetics of deconjugation was investigated with mercaptoethanol as a model thiol to identify suitable reaction conditions. A range of microcystins conjugated to mercaptoethanol, methanethiol, cysteine, and glutathione were then successfully deconjugated, demonstrating the feasibility of releasing conjugated forms of microcystins for chemical analysis. Reagents for removing the released thiols or for trapping the released microcystins increased the reaction rate. Optimization of methodologies based on this reaction should increase the method's utility for measuring free and conjugated microcystins. The results also indicate that thiol-conjugated microcystins slowly release free microcystins, even at neutral pH, with consequences for assessment of toxin exposure, metabolism, and trophic transfer. A range of other common natural and environmental toxins, such as deoxynivalenol and acrylamide, also contain α,ß-unsaturated carbonyl groups and can be expected to behave in a similar manner.


Assuntos
Microcistinas/química , Compostos de Sulfidrila/química , Catálise , Cromatografia Líquida , Espectrometria de Massas
2.
Harmful Algae ; 80: 117-129, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30502804

RESUMO

In the summer of 2012, over 750 dead and dying birds were observed at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island, Maryland, USA (Chesapeake Bay). Clinical signs suggested avian botulism, but an ongoing dense Microcystis bloom was present in an impoundment on the island. Enzyme-linked immunosorbent assay (ELISA) analysis of a water sample indicated 6000 ng mL-1 of microcystins (MCs). LC-UV/MS analysis confirmed the presence of MC-LR and a high concentration of an unknown MC congener (m/z 1037.5). The unknown MC was purified and confirmed to be [D-Leu1]MC-LR using NMR spectroscopy, LC-HRMS and LC-MS2, which slowly converted to [D-Leu1,Glu(OMe)6]MC-LR during storage in MeOH. Lyophilized algal material from the bloom was further characterized using LC-HRMS and LC-MS2 in combination with chemical derivatizations, and an additional 24 variants were detected, including MCs conjugated to Cys, GSH and γ-GluCys and their corresponding sulfoxides. Mallard (Anas platyrhynchos) livers were tested to confirm MC exposure. Two broad-specificity MC ELISAs and LC-MS2 were used to measure free MCs, while 'total' MCs were estimated by both MMPB (3-methoxy-2-methyl-4-phenylbutyric acid) and thiol de-conjugation techniques. Free microcystins in the livers (63-112 ng g-1) accounted for 33-41% of total microcystins detected by de-conjugation and MMPB techniques. Free [D-Leu1]MC-LR was quantitated in tissues at 25-67 ng g-1 (LC-MS2). The levels of microcystin varied based on analytical method used, highlighting the need to develop a comprehensive analysis strategy to elucidate the etiology of bird mortality events when microcystin-producing HABs are present.


Assuntos
Aves , Proliferação Nociva de Algas , Microcistinas/metabolismo , Animais , Cromatografia Líquida , Monitoramento Ambiental , Ensaio de Imunoadsorção Enzimática , Fígado/metabolismo , Microcistinas/química , Microcistinas/toxicidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA