Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 18(3): 445-52, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17141522

RESUMO

The selected ion flow tube (SIFT) technique has been used to investigate the ion-molecule reactions of several ions with the neutral molecules ethylene oxide, CH(2)OCH(2)-c, and propenal, CH(2)CHCHO. Both molecules have been identified in hot-core star forming regions [] and have significance to astrochemical models of the interstellar (ISM) and circumstellar medium (CSM). Moreover, the molecules contain functional groups, such as the epoxide group (ethylene oxide) and an aldehyde group, which are part of a conjugated pi-electron system (propenal) whose reactivities have not been studied in detail in gas-phase ion-molecule reactions. The larger recombination energy ions, Ar(+) and N(2)(+), were reacted with the neutrals to give insight into general fragmentation tendencies. These reactions proceeded via dissociative charge-transfer yielding major fragmentation products of CH(3)(+) and HCO(+) for ethylene oxide and CH(2)CH(+) and HCO(+) for propenal. The amino acids glycine and alanine are of particular interest to astrobiology, especially if they can be synthesized in the gas phase. In an attempt to synthesize amino acid precursors, ethylene oxide and propenal were reacted with NH(n)(+) (n = 1-4) and HCNH(+). As might be expected from the proton detachment energies, NH(+), NH(2)(+), and HCNH(+) reacted via proton transfer. NH(3)(+) reacted with each molecule via H-atom abstraction to produce NH(4)(+), and NH(4)(+) reacted via a ternary association. All binary reactions proceeded near the gas kinetic rate. Several associated molecule switching reactions were performed and implications of these reactions to the structures of the association products are discussed Ikeda et al. and Hollis et al.

2.
J Phys Chem A ; 109(23): 5119-23, 2005 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16833865

RESUMO

A technique has been developed to simultaneously determine recombination rate coefficients, alpha e, and initial concentrations of ion types that coexist in a flowing afterglow plasma. This was tested using the H3(+) + allene reaction in which two different C3H3+ isomers are produced. Use of an electrostatic Langmuir probe enabled the C3H3+ isomer branching ratios for propargyl and cyclic C3H3+ from this allene reaction and their alpha e to be determined over the temperature range 172-489 K. The study showed that the cyclic C3H3+ to propargyl C3H3+ branching ratios from the allene reaction varied from 50/50 at 172 K to 18/82 at 489 K. Over this temperature range, the alpha e for both isomers change only slightly. The room temperature alpha e values for propargyl and cyclic C3H3+ are (1.15 +/- 0.2) x 10(-7) and (8.00 +/- 0.1) x 10(-7) cm3/s, respectively. The data are discussed relative to current theories and in relation to fuel-rich flame chemistry, interstellar molecular synthesis, and modeling of Titan's atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA