RESUMO
Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.
Assuntos
Instabilidade Genômica , Micronúcleos com Defeito Cromossômico , Animais , Humanos , Camundongos , Cromossomos/genética , Dano ao DNA , Instabilidade Genômica/genética , Fenótipo , Sirtuína 1 , Mutações Sintéticas LetaisRESUMO
To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation-the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.
Assuntos
Dano ao DNA , Reparo do DNA , Neoplasias/genética , Neoplasias/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1/metabolismo , Proteína BRCA2 , Ciclo Celular , Proteínas de Ciclo Celular , Reparo do DNA/genética , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/etiologia , Proteínas Serina-Treonina Quinases/metabolismo , Recombinação Genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de TumorRESUMO
Poly(ADP-ribose) polymerase (PARP) and DNA-dependent protein kinase (DNA-PK) are DNA break-activated molecules, Although mice that lack PARP display no gross phenotype and normal DNA excision repair, they exhibit high levels of sister chromatid exchange, indicative of elevated recombination rates. Mutation of the gene for DNA-PK catalytic subunit (Prkdc) cases defective antigen receptor V(D)J recombination and arrests B- and T-lymphocyte development in severe combined immune-deficiency (SCID) mice. SCID V(D)J recombination can be partly rescued in T-lymphocytes by either DNA-damaging agents (gamma-irradiation and bieomycin) or a null mutation of the p53 gene, possibly because of transiently elevated DNA repair activity in response to DNA damage or to delayed apoptosis in the absence of p53. To determine whether the increased chromosomal recombination observed in PARP-deficient cells affects SCID V(D)J recombination, we generated mice lacking both PARP and DNA-PK. Here, we show that thymocytes of SCID mice express both CD4 and CD8 co-receptors, bypassing the SCID block. Double-mutant T-cells in the periphery express TCR beta, which is attributable to productive TCR beta joints. Double-mutant mice develop a high frequency of T-cell lymphoma. These results demonstrate that increased recombination activity after the loss of PARP anti-recombinogenic function can rescue V(D)J recombination in SCID mice and indicate that PARP and DNA-PK cooperate to minimize genomic damage caused by DNA strand breaks.
Assuntos
Proteínas de Ligação a DNA , Rearranjo Gênico , Genes de Imunoglobulinas , Região Variável de Imunoglobulina/genética , Linfoma de Células T/genética , Poli(ADP-Ribose) Polimerases/genética , Proteínas Serina-Treonina Quinases/genética , Recombinação Genética , Animais , Diferenciação Celular/genética , Proteína Quinase Ativada por DNA , Linfoma de Células T/enzimologia , Linfoma de Células T/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Proteínas Nucleares , Baço/metabolismo , Baço/patologia , Timo/metabolismo , Timo/patologiaRESUMO
In most eukaryotes, poly(ADP-ribose) polymerase (PARP) recognizes DNA strand interruptions generated in vivo. DNA binding by PARP triggers primarily its own modification by the sequential addition of ADP-ribose units to form polymers; this modification, in turn, causes the release of PARP from DNA ends. Studies on the effects of the disruption of the gene encoding PARP (Adprt1, formerly Adprp) in mice have demonstrated roles for PARP in recovery from DNA damage and in suppressing recombination processes involving DNA ends. Telomeres are the natural termini of chromosomes and are, therefore, potential targets of PARP. Here, by the use of two different techniques, we show that mice lacking PARP display telomere shortening compared with wild-type mice. Telomere shortening is seen in different genetic backgrounds and in different tissues, both from embryos and adult mice. In vitro telomerase activity, however, is not altered in Adprt1-/- mouse fibroblasts. Furthermore, cytogenetic analysis of mouse embryonic fibroblasts reveals that lack of PARP is associated with severe chromosomal instability, characterized by increased frequencies of chromosome fusions and aneuploidy. The absence of PARP does not affect the presence of single-strand overhangs, naturally present at the ends of telomeres. This study therefore reveals an unanticipated role for PARP in telomere length regulation and provides insights into its functions in maintaining genomic integrity.
Assuntos
Cromossomos/fisiologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/fisiologia , Telômero/fisiologia , Aneuploidia , Animais , Aberrações Cromossômicas , Cruzamentos Genéticos , Enzimas de Restrição do DNA/metabolismo , Fibroblastos , Genótipo , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hibridização de Ácido Nucleico , Telômero/genéticaRESUMO
The DNA damage signalling pathway is a core element of the cellular response to genotoxic insult, and its components play key roles in defending against neoplastic transformation. Recent work has indicated that the human ATM and ATR proteins, and their yeast homologues, are intimately involved in sensing DNA damage, suggesting parallels with the DNA double-strand break repair enzyme DNA-PK.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Proteínas Nucleares , Fosforilação , Transdução de Sinais , Proteínas Supressoras de TumorRESUMO
The initiation of transcription by RNA polymerase II is controlled by transcription factors. Changes in gene transcription are brought about by regulating the activity of these factors. Phosphorylation of transcription factors as a regulatory mechanism is both rapid and readily reversible. Furthermore, because a transcription factor can be targeted by many protein kinases and phosphatases, phosphorylation can effectively integrate information carried by multiple signal transduction pathways, thus providing opportunities for great versatility and flexibility in gene regulation.
RESUMO
The TATA-binding protein TBP appears to be essential for all transcription in eukaryotic cell nuclei, which suggests that its function was established early in evolution. Archaebacteria constitute a kingdom of organisms distinct from eukaryotes and eubacteria. Archaebacterial gene regulatory sequences often map to TATA box-like motifs. Here it is shown that the archaebacterium Pyrococcus woesei expresses a protein with structural and functional similarity to eukaryotic TBP molecules. This suggests that TBP's role in transcription was established before the archaebacterial and eukaryotic lineages diverged and that the transcription systems of archaebacteria and eukaryotes are fundamentally homologous.
Assuntos
Archaea/genética , Evolução Biológica , Proteínas de Ligação a DNA/genética , Células Eucarióticas/metabolismo , TATA Box , Fator de Transcrição TFIIIB , Fatores de Transcrição/genética , Proteínas E1A de Adenovirus/genética , Sequência de Aminoácidos , Arabidopsis/genética , Archaea/química , Archaea/metabolismo , Sequência de Bases , Clonagem Molecular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Genes Bacterianos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genéticaRESUMO
RNA polymerases I, II, and III each use the TATA-binding protein (TBP). Regulators that target this shared factor may therefore provide a means to coordinate the activities of the three nuclear RNA polymerases. The repressor Dr1 binds to TBP and blocks the interaction of TBP with polymerase II- and polymerase III-specific factors. This enables Dr1 to coordinately regulate transcription by RNA polymerases II and III. Under the same conditions, Dr1 does not inhibit polymerase I transcription. By selectively repressing polymerases II and III, Dr1 may shift the physiological balance of transcriptional output in favor of polymerase I.
Assuntos
Fosfoproteínas/farmacologia , RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Fatores de Transcrição TFIII , Fatores de Transcrição/farmacologia , Transcrição Gênica/efeitos dos fármacos , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , TATA Box , Fatores Associados à Proteína de Ligação a TATA , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB , Fator de Transcrição TFIIIB , Fatores de Transcrição/metabolismoRESUMO
The radiosensitive mutant xrs-6, derived from Chinese hamster ovary cells, is defective in DNA double-strand break repair and in ability to undergo V(D)J recombination. The human XRCC5 DNA repair gene, which complements this mutant, is shown here through genetic and biochemical evidence to be the 80-kilodalton subunit of the Ku protein. Ku binds to free double-stranded DNA ends and is the DNA-binding component of the DNA-dependent protein kinase. Thus, the Ku protein is involved in DNA repair and in V(D)J recombination, and these results may also indicate a role for the Ku-DNA-dependent protein kinase complex in those same processes.
Assuntos
Antígenos Nucleares , DNA Helicases , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Genes de Imunoglobulinas , Proteínas Nucleares/genética , Receptores de Antígenos de Linfócitos T/genética , Recombinação Genética , Animais , Sequência de Bases , Células CHO , Sobrevivência Celular/efeitos da radiação , Clonagem Molecular , Cricetinae , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Teste de Complementação Genética , Humanos , Células Híbridas , Autoantígeno Ku , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , TransfecçãoRESUMO
An inheritable muscular hypertrophy was recently described in sheep and shown to be determined by the callipyge gene mapped to ovine chromosome 18. Here, the callipyge phenotype was found to be characterized by a nonmendelian inheritance pattern, referred to as polar overdominance, where only heterozygous individuals having inherited the callipyge mutation from their sire express the phenotype. The possible role of parental imprinting in the determinism of polar overdominance is envisaged.
Assuntos
Genes Dominantes , Impressão Genômica , Músculo Esquelético/anatomia & histologia , Ovinos/anatomia & histologia , Ovinos/genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Genótipo , Heterozigoto , Escore Lod , Masculino , Modelos Genéticos , Mutação , FenótipoRESUMO
Two processes involving DNA double-strand breaks (DSBs) are the repair of DNA damage induced by ionizing radiation, and V(D)J recombination, the genomic rearrangement that creates antigen-receptor diversity in vertebrates. Recent evidence indicates that DNA-dependent protein kinase (DNA-PK), which is activated by DNA ends, is a central component of both the DNA DSB repair and V(D)J recombination machineries.
Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Rearranjo Gênico , Proteínas Serina-Treonina Quinases/genética , Recombinação Genética , Animais , DNA , Dano ao DNA/efeitos da radiação , Proteína Quinase Ativada por DNA , Teste de Complementação Genética , Mamíferos/genética , Modelos Genéticos , MutaçãoRESUMO
DNA non-homologous end-joining (NHEJ) is a crucial process that has been conserved highly throughout eukaryotic evolution. At its heart is a multiprotein complex containing the KU70-KU80 heterodimer. Recent work has identified additional proteins involved in this pathway, providing insights into the mechanism of NHEJ and revealing exciting links with the control of transcription, telomere length and chromatin structure.
Assuntos
Antígenos Nucleares , DNA Helicases , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae , DNA/genética , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Autoantígeno Ku , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos , Peptídeos/metabolismo , Pró-Opiomelanocortina/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismoRESUMO
Failure to remove DNA damage is potentially lethal. Eukaryotic cells have therefore devised highly effective ways of detecting and repairing DNA lesions. Recent evidence indicates that protein kinases play essential roles in recognizing DNA damage and in transducing DNA damage signals to bring about changes in cellular metabolism that facilitate DNA repair.
Assuntos
Dano ao DNA , Proteínas Quinases/fisiologia , Animais , Reparo do DNA , Indução Enzimática , Proteínas Quinases/biossínteseRESUMO
DNA strand breaks are potentially mutagenic and must, therefore, be recognized and repaired. Recent work has identified DNA polymerase epsilon, Ku, and proteins such as DNA-PKcs, Mec1 and Tel1 as key players in DNA damage recognition pathways. Studies on these and other factors have provided important insights into the mechanisms of DNA repair and how DNA damage signals are transduced to the transcription and cell cycle machineries. This work also suggests how deficiencies in DNA damage detection systems can result in genetic instability and cancer.
Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína Quinase Ativada por DNA , DNA Polimerase Dirigida por DNA/metabolismo , Ativação Enzimática , Humanos , Proteínas Nucleares , Fosfatidilinositol 3-QuinasesRESUMO
ATM, the gene product mutated in the cancer susceptibility syndrome ataxia-telangiectasia, is related to proteins involved in DNA repair and cell-cycle control, perhaps explaining how ATM prevents carcinogenesis.
Assuntos
Ataxia Telangiectasia/genética , Proteínas de Ligação a DNA , Proteínas/genética , Animais , Ataxia Telangiectasia/enzimologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Reparo do DNA , Proteína Quinase Ativada por DNA , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Proteínas Supressoras de TumorRESUMO
DNA ligases catalyse the joining of DNA single- and double-strand breaks. Saccharomyces cerevisiae Cdc9p is a homologue of mammalian DNA ligase I and is required for DNA replication, recombination and single-strand break repair. The other yeast ligase, Lig4p/Dnl4p, is a homologue of mammalian DNA ligase IV, and functions in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair [1] [2] [3] [4]. Lig4p interacts with Lif1p, the yeast homologue of the human ligase IV-associated protein, XRCC4 [5]. This interaction takes place through the carboxy-terminal domain of Lig4p and is required for Lig4p stability. We show that the carboxy-terminal interaction region of Lig4p is necessary for NHEJ but, when fused to Cdc9p, is insufficient to confer NHEJ function to Cdc9p. Also, Lif1p stimulates the in vitro catalytic activity of Lig4p in adenylation and DNA ligation. Nevertheless, Lig4p is inactive in NHEJ in the absence of Lif1p in vivo, even when Lig4p is stably expressed. We show that Lif1p binds DNA in vitro and, through in vivo cross-linking and chromatin immuno precipitation assays, demonstrate that it targets Lig4p to chromosomal DNA double-strand breaks. Furthermore, this targeting requires another key NHEJ protein, Ku.
Assuntos
Antígenos Nucleares , Dano ao DNA , DNA Helicases , DNA Ligases/metabolismo , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , DNA Ligase Dependente de ATP , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Humanos , Autoantígeno Ku , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genéticaRESUMO
The recently determined crystal structure of the Ku heterodimer, in both DNA-bound and unbound forms, has shed new light on the mechanism by which this protein fulfills its key role in the repair of DNA double-strand breaks.
Assuntos
Antígenos Nucleares , DNA Helicases , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Animais , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Humanos , Autoantígeno Ku , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Estrutura Secundária de ProteínaRESUMO
The gene mutated in Nijmegen breakage syndrome, a chromosome instability disorder, has been identified and sequenced. The protein product of this gene forms a complex with hMre11 and hRad50--proteins that are involved in repairing double-strand breaks in DNA.
Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/fisiologia , Quebra Cromossômica , Reparo do DNA/fisiologia , Proteínas Nucleares , Humanos , SíndromeRESUMO
BACKGROUND: Mammalian cells deficient in the XRCC4 DNA repair protein are impaired in DNA double-strand break repair and are consequently hypersensitive to ionising radiation. These cells are also defective in site-specific V(D)J recombination, a process that generates the diversity of antigen receptor genes in the developing immune system. These features are shared by cells lacking components of the DNA-dependent protein kinase (DNA-PK). Although the XRCC4 gene has been cloned, the function(s) of XRCC4 in DNA end-joining has remained elusive. RESULTS: We found that XRCC4 is a nuclear phosphoprotein and was an effective substrate in vitro for DNA-PK. Human XRCC4 associated extremely tightly with another protein(s) even in the presence of 1 M NaCl. Co-immunoprecipitation and adenylylation assays demonstrated that this associated factor was the recently identified human DNA ligase IV. Consistent with this, XRCC4 and DNA ligase IV copurified exclusively and virtually quantitatively over a variety of chromatographic steps. Protein mapping studies revealed that XRCC4 interacted with ligase IV via the unique carboxy-terminal ligase IV extension that comprises two tandem BRCT (BRCA1 carboxyl terminus) homology motifs, which are also found in other DNA repair-associated factors and in the breast cancer susceptibility protein BRCA1. CONCLUSIONS: Our findings provide a function for the carboxy-terminal region of ligase IV and suggest that BRCT domains of other proteins may mediate contacts between DNA repair components. In addition, our data implicate mammalian ligase IV in V(D)J recombination and the repair of radiation-induced DNA damage, and provide a model for the potentiation of these processes by XRCC4.
Assuntos
DNA Ligases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Sítios de Ligação , DNA Ligase Dependente de ATP , DNA Ligases/isolamento & purificação , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Células HeLa , Humanos , Técnicas In Vitro , Modelos Biológicos , Proteínas Nucleares , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Especificidade por SubstratoRESUMO
In eukaryotic cells, surveillance mechanisms detect and respond to DNA damage by triggering cell-cycle arrest and inducing the expression of DNA-repair genes [1]. In budding yeast, a single DNA double-strand break (DSB) is sufficient to trigger cell-cycle arrest [2]. One highly conserved pathway for repairing DNA DSBs is DNA non-homologous end-joining (NHEJ), which depends on the DNA end-binding protein Ku [3]. NHEJ also requires the SIR2, SIR3 and SIR4 gene products [4] [5], which are responsible for silencing at telomeres and the mating-type loci [6]. Because of the link between NHEJ and the Sir proteins, we investigated whether DNA damage influences telomeric silencing. We found that DNA damage triggers the reversible loss of telomeric silencing and relocation of Sir3p from telomeres. Complete Sir3p relocation was triggered by a single DNA DSB, suggesting that the singal is amplified. Consistent with this idea, Sir3p relocation depended on the DNA damage-signalling components Ddc1p and Mec1p. Thus, signalling of DNA damage may release Sir3p from telomeres and permit its subsequent association with other nuclear subdomains to regulate transcription, participate in DNA repair and/or enhance genomic stability by other mechanisms.