Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.060
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 162(6): 1212-4, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359982

RESUMO

In this issue, Farez et al. report that the circadian hormone melatonin, whose levels vary with seasonal changes in night length, shifts the immune response toward an anti-inflammatory state that may explain the seasonal variability of multiple sclerosis disease activity.


Assuntos
Melatonina/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Animais , Feminino , Humanos , Masculino
2.
Nature ; 614(7946): 70-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725993

RESUMO

Strongly interacting spins underlie many intriguing phenomena and applications1-4 ranging from magnetism to quantum information processing. Interacting spins combined with motion show exotic spin transport phenomena, such as superfluidity arising from pairing of spins induced by spin attraction5,6. To understand these complex phenomena, an interacting spin system with high controllability is desired. Quantum spin dynamics have been studied on different platforms with varying capabilities7-13. Here we demonstrate tunable itinerant spin dynamics enabled by dipolar interactions using a gas of potassium-rubidium molecules confined to two-dimensional planes, where a spin-1/2 system is encoded into the molecular rotational levels. The dipolar interaction gives rise to a shift of the rotational transition frequency and a collision-limited Ramsey contrast decay that emerges from the coupled spin and motion. Both the Ising and spin-exchange interactions are precisely tuned by varying the strength and orientation of an electric field, as well as the internal molecular state. This full tunability enables both static and dynamical control of the spin Hamiltonian, allowing reversal of the coherent spin dynamics. Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics using the strong, tunable dipolar interaction.

3.
Nature ; 606(7916): 1007-1014, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705812

RESUMO

The activation of eukaryotic origins of replication occurs in temporally separated steps to ensure that chromosomes are copied only once per cell cycle. First, the MCM helicase is loaded onto duplex DNA as an inactive double hexamer. Activation occurs after the recruitment of a set of firing factors that assemble two Cdc45-MCM-GINS (CMG) holo-helicases. CMG formation leads to the underwinding of DNA on the path to the establishment of the replication fork, but whether DNA becomes melted at this stage is unknown1. Here we use cryo-electron microscopy to image ATP-dependent CMG assembly on a chromatinized origin, reconstituted in vitro with purified yeast proteins. We find that CMG formation disrupts the double hexamer interface and thereby exposes duplex DNA in between the two CMGs. The two helicases remain tethered, which gives rise to a splayed dimer, with implications for origin activation and replisome integrity. Inside each MCM ring, the double helix becomes untwisted and base pairing is broken. This comes as the result of ATP-triggered conformational changes in MCM that involve DNA stretching and protein-mediated stabilization of three orphan bases. Mcm2 pore-loop residues that engage DNA in our structure are dispensable for double hexamer loading and CMG formation, but are essential to untwist the DNA and promote replication. Our results explain how ATP binding nucleates origin DNA melting by the CMG and maintains replisome stability at initiation.


Assuntos
Replicação do DNA , DNA , Proteínas de Manutenção de Minicromossomo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Técnicas In Vitro , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares , Desnaturação de Ácido Nucleico , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 79(1): 140-154.e7, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32464091

RESUMO

Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.


Assuntos
DNA Primase/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Holoenzimas/química , DNA Primase/genética , DNA Bacteriano , DNA Polimerase Dirigida por DNA/genética , DnaB Helicases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Conformação Molecular , Ligação Proteica , Conformação Proteica
5.
Mol Cell ; 77(1): 17-25.e5, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704183

RESUMO

Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.


Assuntos
DNA Polimerase III/genética , Replicação do DNA/genética , DNA/genética , Células Eucarióticas/fisiologia , DNA Polimerase I/genética , DNA Primase/genética , Saccharomyces cerevisiae/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-38424474

RESUMO

A decade ago, the US Supreme Court decided Association for Molecular Pathology v. Myriad Genetics, Inc., concluding that isolated genes were not patentable subject matter. Beyond being a mere patent dispute, the case was a political and cultural phenomenon, viewed as a harbinger for the health of the biotechnology industry. With a decade of perspective, though, Myriad's impact seems much narrower. The law surrounding patentable subject matter-while greatly transformed-only centered on Myriad in small part. The case had only a modest impact on patenting practices both in and outside the United States. And persistent efforts to legislatively overturn the decision have not borne fruit. The significance of Myriad thus remains, even a decade later, hidden by larger developments in science and law that have occurred since the case was decided.Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 25 is August 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

7.
Nat Immunol ; 16(3): 306-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25621825

RESUMO

The recognized diversity of innate lymphoid cells (ILCs) is rapidly expanding. Three ILC classes have emerged, ILC1, ILC2 and ILC3, with ILC1 and ILC3 including several subsets. The classification of some subsets is unclear, and it remains controversial whether natural killer (NK) cells and ILC1 cells are distinct cell types. To address these issues, we analyzed gene expression in ILCs and NK cells from mouse small intestine, spleen and liver, as part of the Immunological Genome Project. The results showed unique gene-expression patterns for some ILCs and overlapping patterns for ILC1 cells and NK cells, whereas other ILC subsets remained indistinguishable. We identified a transcriptional program shared by small intestine ILCs and a core ILC signature. We revealed and discuss transcripts that suggest previously unknown functions and developmental paths for ILCs.


Assuntos
Imunidade Inata/genética , Imunidade Inata/imunologia , Linfócitos/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Linfócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Proc Natl Acad Sci U S A ; 121(9): e2319436121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386712

RESUMO

Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.


Assuntos
Silicatos , Oligoelementos , Zea mays , Agricultura , Solo , Dióxido de Carbono , Glycine max
9.
Blood ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579288

RESUMO

Multiple myeloma is a plasma cell malignancy that is currently incurable with conventional therapies. Following the success of CD19-targeted chimeric antigen receptor (CAR) T-cells in leukemia and lymphoma, CAR T-cells targeting B-cell maturation antigen (BCMA) more recently demonstrated impressive activity in relapsed and refractory myeloma patients. However, BCMA-directed therapy can fail due to low expression of BCMA on myeloma cells, suggesting that novel approaches to better address antigen-low disease may improve patient outcomes. We hypothesized that engineered secretion of the pro-inflammatory cytokine interleukin-18 (IL-18) and multi-antigen targeting could improve CAR T-cell activity against BCMA-low myeloma. In a syngeneic murine model of myeloma, CAR T-cells targeting the myeloma-associated antigens BCMA and B-cell activating factor (BAFF-R) failed to eliminate myeloma when these antigens were weakly expressed, whereas IL-18-secreting CAR T-cells targeting these antigens promoted myeloma clearance. IL-18-secreting CAR T-cells developed an effector-like T-cell phenotype, promoted interferon-gamma production, reprogrammed the myeloma bone marrow microenvironment through type I/II interferon signaling, and activated macrophages to mediate anti-myeloma activity. Simultaneous targeting of weakly expressed BCMA and BAFF-R with dual-CAR T-cells enhanced T-cell:target cell avidity, increased overall CAR signal strength, and stimulated anti-myeloma activity. Dual-antigen targeting augmented CAR T-cell secretion of engineered IL-18 and facilitated elimination of larger myeloma burdens in vivo. Our results demonstrate that combination of engineered IL-18 secretion and multi-antigen targeting can eliminate myeloma with weak antigen expression through distinct mechanisms.

10.
J Immunol ; 212(7): 1129-1141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363226

RESUMO

In contrast to the "helper" activities of most CD4+ T effector subsets, CD4+ cytotoxic T lymphocytes (CD4-CTLs) perform functions normally associated with CD8+ T and NK cells. Specifically, CD4-CTLs secrete cytotoxic molecules and directly target and kill compromised cells in an MHC class II-restricted fashion. The functions of these cells have been described in diverse immunological contexts, including their ability to provide protection during antiviral and antitumor responses, as well as being implicated in autoimmunity. Despite their significance to human health, the complete mechanisms that govern their programming remain unclear. In this article, we identify the Ikaros zinc finger transcription factor Eos (Ikzf4) as a positive regulator of CD4-CTL differentiation during murine immune responses against influenza virus infection. We find that the frequency of Eos+ cells is elevated in lung CD4-CTL populations and that the cytotoxic gene program is compromised in Eos-deficient CD4+ T cells. Consequently, we observe a reduced frequency and number of lung-residing, influenza virus-responsive CD4-CTLs in the absence of Eos. Mechanistically, we determine that this is due, at least in part, to reduced expression of IL-2 and IL-15 cytokine receptor subunits on the surface of Eos-deficient CD4+ T cells, both of which support the CD4-CTL program. Finally, we find that Aiolos, a related Ikaros family member and known CD4-CTL antagonist, represses Eos expression by antagonizing STAT5-dependent activation of the Ikzf4 promoter. Collectively, our findings reveal a mechanism wherein Eos and Aiolos act in opposition to regulate cytotoxic programming of CD4+ T cells.


Assuntos
Antineoplásicos , Linfócitos T CD4-Positivos , Camundongos , Humanos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linfócitos T Citotóxicos , Diferenciação Celular , Citocinas/metabolismo , Antineoplásicos/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(42): e2311983120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812717

RESUMO

The lacrimal gland is of central interest in ophthalmology both as the source of the aqueous component of tear fluid and as the site of autoimmune pathology in the context of Sjogren's syndrome (SjS). To provide a foundational description of mouse lacrimal gland cell types and their patterns of gene expression, we have analyzed single-cell transcriptomes from wild-type (Balb/c) mice and from two genetically based SjS models, MRL/lpr and NOD (nonobese diabetic).H2b, and defined the localization of multiple cell-type-specific protein and mRNA markers. This analysis has uncovered a previously undescribed cell type, Car6+ cells, which are located at the junction of the acini and the connecting ducts. More than a dozen secreted polypeptides that are likely to be components of tear fluid are expressed by acinar cells and show pronounced sex differences in expression. Additional examples of gene expression heterogeneity within a single cell type were identified, including a gradient of Claudin4 along the length of the ductal system and cell-to-cell heterogeneity in transcription factor expression within acinar and myoepithelial cells. The patterns of expression of channels, transporters, and pumps in acinar, Car6+, and ductal cells make strong predictions regarding the mechanisms of water and electrolyte secretion. In MRL/lpr and NOD.H2b lacrimal glands, distinctive changes in parenchymal gene expression and in immune cell subsets reveal widespread interferon responses, a T cell-dominated infiltrate in the MRL/lpr model, and a mixed B cell and T cell infiltrate in the NOD.H2b model.


Assuntos
Aparelho Lacrimal , Síndrome de Sjogren , Feminino , Camundongos , Masculino , Animais , Síndrome de Sjogren/metabolismo , Aparelho Lacrimal/metabolismo , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NOD , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
12.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796985

RESUMO

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Assuntos
COVID-19 , Sarampo , Caxumba , Cricetinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Imunoglobulina G , Mesocricetus , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
13.
EMBO J ; 40(3): e106501, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270927

RESUMO

Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, using gain- and loss-of-function approaches. Mechanistically, SARS-CoV-2 restriction occurred independently of IFITM3 S-palmitoylation, indicating a restrictive capacity distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the IFITM3 endocytosis-promoting YxxФ motif converted human IFITM3 into an enhancer of SARS-CoV-2 infection, and cell-to-cell fusion assays confirmed the ability of endocytic mutants to enhance Spike-mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which increases plasma membrane fusion versus endosome fusion of SARS-CoV-2, attenuated IFITM3 restriction and converted amphipathic helix mutants into infection enhancers. In sum, we uncover new pro- and anti-viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity-based mechanisms used for endosomal SARS-CoV-2 restriction.


Assuntos
Antígenos de Diferenciação/genética , COVID-19/genética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos , Mutação , SARS-CoV-2/fisiologia , Serina Endopeptidases , Internalização do Vírus
14.
Annu Rev Genet ; 51: 241-263, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28853921

RESUMO

Much progress has been made in the identification of specific human gene variants that contribute to enhanced susceptibility or resistance to viral diseases. Herein we review multiple discoveries made with genome-wide or candidate gene approaches that have revealed significant insights into virus-host interactions. Genetic factors that have been identified include genes encoding virus receptors, receptor-modifying enzymes, and a wide variety of innate and adaptive immunity-related proteins. We discuss a range of pathogenic viruses, including influenza virus, respiratory syncytial virus, human immunodeficiency virus, human T cell leukemia virus, human papilloma virus, hepatitis B and C viruses, herpes simplex virus, norovirus, rotavirus, parvovirus, and Epstein-Barr virus. Understanding the genetic underpinnings that affect infectious disease outcomes should allow tailored treatment and prevention approaches in the future.


Assuntos
Imunidade Adaptativa , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Viroses/genética , Citocinas/genética , Citocinas/imunologia , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/imunologia , Genética Humana , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Receptores KIR/genética , Receptores KIR/imunologia , Receptores Virais/genética , Receptores Virais/imunologia , Transdução de Sinais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/imunologia , Viroses/imunologia , Viroses/patologia , Viroses/virologia
15.
Nat Immunol ; 14(9): 937-48, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23913046

RESUMO

Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4(+) and NKp46(+) innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b(+) cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103(+) cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b(+) cDCs in the response to pathogens in vivo.


Assuntos
Citrobacter rodentium/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Receptor Notch2/metabolismo , Animais , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/mortalidade , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interleucina-23/metabolismo , Mucosa Intestinal/microbiologia , Lectinas Tipo C/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Receptor Notch2/deficiência , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Baço/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cicatrização/genética , Cicatrização/imunologia
16.
Blood ; 141(2): 194-199, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36315910

RESUMO

Sickle cell disease (SCD) is an inherited disorder resulting from a ß-globin gene mutation, and SCD patients experience erythrocyte sickling, vaso-occlusive episodes (VOE), and progressive organ damage. Chronic hemolysis, inflammation, and repeated red blood cell transfusions in SCD can disrupt iron homeostasis. Patients who receive multiple blood transfusions develop iron overload, and another subpopulation of SCD patients manifest iron deficiency. To elucidate connections between dietary iron, the microbiome, and SCD pathogenesis, we treated SCD mice with an iron-restricted diet (IRD). IRD treatment reduced iron availability and hemolysis, decreased acute VOE, and ameliorated chronic organ damage in SCD mice. Our results extend previous studies indicating that the gut microbiota regulate disease in SCD mice. IRD alters microbiota load and improves gut integrity, together preventing crosstalk between the gut microbiome and inflammatory factors such as aged neutrophils, dampening VOE, and organ damage. These findings provide strong evidence for the therapeutic potential of manipulating iron homeostasis and the gut microbiome to ameliorate SCD pathophysiology. Many treatments, which are under development, focus on lowering the systemic iron concentration to relieve disease complications, and our data suggest that iron-induced changes in microbiota load and gut integrity are related- and novel-therapeutic targets.


Assuntos
Anemia Falciforme , Doenças Vasculares , Camundongos , Animais , Ferro da Dieta , Ferro , Hemólise , Anemia Falciforme/complicações , Anemia Falciforme/terapia , Doenças Vasculares/etiologia , Doenças Vasculares/prevenção & controle
17.
EMBO Rep ; 24(4): e56660, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880581

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , COVID-19/genética , Interferons/genética , Pulmão , Camundongos Knockout
18.
Chem Rev ; 123(23): 13419-13440, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37971892

RESUMO

The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.


Assuntos
Replicação do DNA , DNA , DNA/química , Conformação Molecular
19.
Chem Rev ; 123(9): 5459-5520, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115521

RESUMO

Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.


Assuntos
Biocatálise , Técnicas de Química Sintética
20.
J Immunol ; 210(9): 1257-1271, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881867

RESUMO

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.


Assuntos
Hidróxido de Alumínio , COVID-19 , Humanos , Animais , Camundongos , Imunidade nas Mucosas , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Imunização , Adjuvantes Imunológicos , Anticorpos Antivirais , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA