Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 16(5): 570-575, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33589811

RESUMO

In the quest for large-scale quantum computing, networked quantum computers offer a natural path towards scalability. While recent experiments have demonstrated nearest neighbour entanglement for electron spin qubits in semiconductors, on-chip long-distance entanglement could bring more versatility to connect quantum core units. Here, we employ the moving trapping potential of a surface acoustic wave to realize the controlled and coherent transfer of a pair of entangled electron spins between two distant quantum dots. The subsequent electron displacement induces coherent spin rotations, which drives spin quantum interferences. We observe high-contrast interference as a signature of the preservation of the entanglement all along the displacement procedure, which includes a separation of the two spins by a distance of 6 µm. This work opens the route towards fast on-chip deterministic interconnection of remote quantum bits in semiconductor quantum circuits.

2.
Nat Nanotechnol ; 16(3): 296-301, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33349684

RESUMO

The coherent manipulation of individual quantum objects organized in arrays is a prerequisite to any scalable quantum information platform. The cumulated efforts to control electron spins in quantum dot arrays have permitted the recent realization of quantum simulators and multielectron spin-coherent manipulations. Although a natural path to resolve complex quantum-matter problems and to process quantum information, two-dimensional (2D) scaling with a high connectivity of such implementations remains undemonstrated. Here we demonstrate the 2D coherent control of individual electron spins in a 3 × 3 array of tunnel-coupled quantum dots. We focus on several key quantum functionalities: charge-deterministic loading and displacement, local spin readout and local coherent exchange manipulation between two electron spins trapped in adjacent dots. This work lays some of the foundations to exploit a 2D array of electron spins for quantum simulation and information processing.

3.
Nat Nanotechnol ; 14(8): 737-741, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31086305

RESUMO

The engineering of a compact qubit unit cell that embeds all quantum functionalities is mandatory for large-scale integration. In addition, these functionalities should present the lowest error rate possible to successfully implement quantum error correction protocols1. Electron spins in silicon quantum dots are particularly promising because of their high control fidelity2-5 and their potential compatibility with complementary metal-oxide-semiconductor industrial platforms6,7. However, an efficient and scalable spin readout scheme is still missing. Here we demonstrate a high fidelity and robust spin readout based on gate reflectometry in a complementary metal-oxide-semiconductor device that consists of a qubit dot and an ancillary dot coupled to an electron reservoir. This scalable method allows us to read out a spin in a single-shot manner with an average fidelity above 98% for a 0.5 ms integration time. To achieve such a fidelity, we combine radio-frequency gate reflectometry with a latched spin blockade mechanism that requires electron exchange between the ancillary dot and the reservoir. We show that the demonstrated high readout fidelity is fully preserved up to 0.5 K. This result holds particular relevance for the future cointegration of spin qubits and classical control electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA