Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 31(9): 1310-1315, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28635041

RESUMO

Acute carbon monoxide (CO) poisoning causes neurotoxicity through induction of necrosis, apoptosis, lipid peroxidation and oxidative stress. Resveratrol (RES) is a natural polyphenolic phytoalexin that exhibits neuroprotective effects in ischemia/reperfusion due to its anti-apoptotic, anti-necrotic and strong anti-oxidant properties as well as its ability to activate pro-survival pathways. In this study, rats were exposed to CO 3000 ppm for 1 h. Immediately after poisoning and on the next four consecutive days, RES (1, 5 and 10 mg/kg) was administered intraperitoneally. On the fifth day, animals' brains were excised, and necrosis, lipid peroxidation level and the level of Akt, BAX and BCL2 expression were evaluated. The results showed that RES 10 mg/kg significantly reduced lipid peroxidation, but RES 1 and 5 mg/kg had no significant effect on this parameter. Furthermore, RES 5 and 10 mg/kg significantly increased Akt expression level, while BAX/BCL2 ratio was reduced by RES 1, 5 and 10 mg/kg. Moreover, RES reduced necrotic foci in the brain, but the best results were seen following treatment with RES 10 mg/kg. In summary, RES showed neuroprotective effect in CO-poisoned rats as it decreased necrosis and BAX/BCL2 ratio and increased Akt expression levels. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Intoxicação por Monóxido de Carbono/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estilbenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Necrose/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Resveratrol , Proteína X Associada a bcl-2/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38700797

RESUMO

Carbon monoxide (CO) is produced via incomplete combustion of fossil fuels and it may cause long-term neurological sequel upon exposure. Hesperidin (HES), a flavanone glycoside found in citrus plants, exerts diverse beneficial health effects. The present study mechanistically examined the neuroprotective effects of HES in CO-poisoned rats. Thirty male Wistar rats (five groups of six animals) were exposed to 3000 ppm CO for 1 h. Immediately after the exposure and on the next 4 consecutive days (totally five doses), rats intraperitoneally received either normal saline (the control group) or different doses of HES (25, 50, and 100 mg/kg). A sham group that was not exposed to CO was also considered. After evaluation of spatial learning and memory using a Morris water maze (MWM), animals were sacrificed and oxidative stress status in blood samples, and Akt, Bax, Bcl2, and brain-derived neurotrophic factor (BDNF) expression in brain samples were assessed. Western blot analysis indicated increased Akt but decreased Bax/Bcl2 levels in the HES 100 mg/kg, and induced BDNF levels in all HES-treated groups. MWM results showed that HES significantly decreased memory loss. The current findings indicate that HES could alleviate neurological impairments induced by CO in rats.

3.
J Pharm Pharmacol ; 72(12): 1822-1829, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32930406

RESUMO

OBJECTIVES: Umbelliprenin (UMB) is a prenylated coumarin that acts as an in vitro antioxidant and inhibits lipoxygenase managing the inflammation pathways, while in vivo it exerts anti-inflammatory activities. METHODS: In this study, neuropathic pain was induced by four intraperitoneal doses of 2 mg/kg per day of paclitaxel (PTX) on days 1, 3, 5 and 7. Here, 49 male mice were randomly divided in the following groups: sham (not treated animals), negative control (PTX-treated receiving normal saline), single-dose UMB 6.25, 12.5 and 25 mg/kg groups (PTX-treated receiving UMB 6.25, 12.5 and 25 mg/kg, respectively), prevention (PTX-treated receiving PTX along with UMB 12.5 mg/kg on days 1, 3, 5 and 7) and positive control group (PTX-treated receiving imipramine 10 mg/kg as acute treatment). Hot-plate test was done to assess response to heat. Finally, interleukin (IL)-6 levels in the sciatic nerve and lipid peroxidation in sera were assessed. KEY FINDINGS: Umbelliprenin was found equally effective for acute treatment with imipramine, when comparing the prevention group and the positive control group. Single, 25 mg/kg UMB effectively attenuated hyperalgesia, lipid peroxidation and IL-6 levels. CONCLUSIONS: Umbelliprenin alleviated neuropathic pain, and decreased serum IL-6 levels and oxidative stress. UMB deserves further investigations, especially in clinical settings.


Assuntos
Analgésicos/farmacologia , Nervo Isquiático/efeitos dos fármacos , Neuropatia Ciática/prevenção & controle , Umbeliferonas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Modelos Animais de Doenças , Interleucina-6/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Paclitaxel , Limiar da Dor/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiopatologia , Neuropatia Ciática/induzido quimicamente , Neuropatia Ciática/metabolismo , Neuropatia Ciática/fisiopatologia
4.
Mol Med Rep ; 19(2): 1032-1039, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30569139

RESUMO

Carbon monoxide (CO) has been shown to induce several cardiovascular abnormalities, as well as necrosis, apoptosis and oxidative stress in the brain. Magnesium sulfate (MS) has been shown to have beneficial activities against hypoxia in the brain. In the present study, the possible protective effects of MS against CO­induced cerebral ischemia were investigated. For this purpose, 25 male Wistar rats were exposed to 3,000 ppm CO for 1 h. The animals were divided into 5 groups (n=5 in each group) as follows: The negative control group (not exposed to CO), the positive control group (CO exposed and treated with normal saline), and 3 groups of CO­exposed rats treated with MS (75, 150 and 300 mg/kg/day) administered intraperitoneally for 5 consecutive days. On the 5th day, the animals were sacrificed and the brains were harvested for the evaluation of necrosis, apoptosis and oxidative stress. Histopathological evaluation revealed that MS reduced the number and intensity of necrotic insults. The Bax/Bcl2 ratio and malondialdehyde (MDA) levels were significantly decreased in a dose­dependent manner in the MS­treated rats compared to the positive control group, while a significant dose­dependent increase in Akt expression, a pro­survival protein, was observed. In addition, MS administration reduced pro­apoptotic indice levels, ameliorated histological insults, favorably modulated oxidative status and increased Akt expression levels, indicating a possible neuroprotective effect in the case of CO poisoning. On the whole, the findings of this study indicate that MS may prove to be useful in protecting against CO­induced cerebral injury.


Assuntos
Lesões Encefálicas/prevenção & controle , Intoxicação por Monóxido de Carbono/prevenção & controle , Monóxido de Carbono/antagonistas & inibidores , Sulfato de Magnésio/farmacologia , Necrose/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Monóxido de Carbono/toxicidade , Intoxicação por Monóxido de Carbono/genética , Intoxicação por Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/patologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Injeções Intraperitoneais , Masculino , Malondialdeído/metabolismo , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
5.
Res Pharm Sci ; 13(1): 65-72, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29387113

RESUMO

Carbon monoxide (CO), a toxic gas produced via incomplete fossil fuel combustion, has several poisonous effects in the heart including induction of necrosis, apoptosis, and electrocardiogram (ECG) changes. Magnesium sulfate (MS) is a drug with cardioprotective effects especially when used after ischemia/reperfusion. In the current study, we aimed to evaluate MS cardioprotective effects following CO poisoning. Animals were exposed to CO 3000 ppm for 1 h and immediately after the exposure period and on the next 4 days (a total of 5 consecutive doses given on a daily basis), MS (75, 150 and 300 mg/kg) was injected intraperitoneally (i.p.) and ECG was recorded focusing on ST-segment, T-wave, and Q-pathologic wave changes. On day 5, animals were sacrificed and their heart was excised for determination of BAX, BCL2 and Akt expression level using western blot analysis and necrosis investigations. The results showed that MS significantly decreased necrosis and BAX/BCL2 ratio (P < 0.001) while pro-survival protein Akt was significantly increased (P < 0.001). Moreover, CO-induced ST-segment depression, T-wave inversion, and atrioventricular block (AV-block) were decreased following treatment with MS. In conclusion, our results showed that MS could decrease cardiac deleterious effects of CO poisoning including necrosis and apoptosis while increased the expression of Akt, as a cell survival protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA