Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 327(1): C184-C192, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826137

RESUMO

Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 µM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva , Oligonucleotídeos , Inibidores de Proteínas Quinases , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Linhagem Celular Tumoral , Oligonucleotídeos/farmacologia , Apoptose/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Dasatinibe/farmacologia , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Cell Biol Toxicol ; 39(5): 1939-1956, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-34973136

RESUMO

The unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells. Renal clearance is one of the most important routes of nanoparticle excretion; therefore, a detailed evaluation of nanoparticle-mediated nephrotoxicity is an important task. Integrated analysis of methylome and transcriptome changes induced by INPs (PEG-AuNPs, Fe3O4NPs, SiO2NPs, and TiO2NPs) revealed significantly deregulated genes with functional classification in immune response, DNA damage, and cancer-related pathways. Although most deregulated genes were unique to individual INPs, a relatively high proportion of them encoded the transcription factors. Interestingly, FOS hypermethylation inversely correlating with gene expression was associated with all INPs exposures. Our study emphasizes the need for a more comprehensive investigation of INPs' biological safety, especially after chronic exposure.


Assuntos
Nanopartículas Metálicas , Transcriptoma , Humanos , Transcriptoma/genética , Epigenoma/genética , Ouro , Nanopartículas Metálicas/toxicidade , Metilação de DNA/genética , Rim
3.
Neoplasma ; 70(3): 390-401, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37498075

RESUMO

Silver nanoparticles (AgNPs) exhibit unique physicochemical properties, making these nanomaterials attractive for various medical applications. Among them, AgNPs have shown great potential in the treatment of cancer by inducing apoptosis in cancer cells, inhibiting tumor growth, and enhancing the efficacy of conventional cancer treatments such as chemotherapy and radiation therapy. Despite the promising therapeutical advantage of AgNPs, there are several challenges that need to be addressed. One of the most important is AgNPs' toxicity, which in case of treatment might be extended to non-cancerous cells and tissues. In our study, we therefore investigated the effects of spherical AgNPs with the silver core size of 10, 30, and 45 nm coated with polyacrylic acid (PAA-AgNPs) in an in vitro model using cancer (A549) and non-cancer (HEL299) cells. We estimated the impact of these nanoparticles on cell viability, cell proliferation, and cell actin cytoskeleton remodeling. Moreover, changes in the expression of TNFA, IL-10, FN1, and SOD1 mRNA induced by PAA-AgNPs were determined. Our results suggest that the smallest (10 nm) PAA-AgNPs are the most effective in apoptosis induction, however, they are also the most toxic from the three AgNPs types to both, cancer and non-cancer cells, while bigger (30 and 45 nm) PAA-AgNPs showed fewer undesirable effects in these pulmonary cells.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Apoptose , Pulmão/metabolismo
4.
Int J Nanomedicine ; 19: 4103-4120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736658

RESUMO

Introduction: Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods: We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results: The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion: Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.


Assuntos
Ouro , Rim , Fígado , Nanopartículas Metálicas , Soroalbumina Bovina , Baço , Animais , Masculino , Camundongos , Ouro/química , Ouro/farmacocinética , Ouro/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/administração & dosagem , Tamanho da Partícula , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Baço/efeitos dos fármacos , Distribuição Tecidual
5.
Viruses ; 14(4)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35458415

RESUMO

In only two years, the coronavirus disease 2019 (COVID-19) pandemic has had a devastating effect on public health all over the world and caused irreparable economic damage across all countries. Due to the limited therapeutic management of COVID-19 and the lack of tailor-made antiviral agents, finding new methods to combat this viral illness is now a priority. Herein, we report on a specific oligonucleotide-based RNA inhibitor targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It displayed remarkable spontaneous cellular uptake, >94% efficiency in reducing RNA-dependent RNA polymerase (RdRp) RNA levels in transfected lung cell lines, and >98% efficiency in reducing SARS-CoV-2 RNA levels in samples from patients hospitalized with COVID-19 following a single application.


Assuntos
Tratamento Farmacológico da COVID-19 , Oligonucleotídeos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA