Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Small ; : e2401333, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602227

RESUMO

Amidst these growing sustainability concerns, producing NH4 + via electrochemical NO3 - reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber-Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4 + production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy-efficient NO3RR-to-NH4 + pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4 + production rate (98 nmol s-1 cm-2), selectivity (97.5%) and current density (≈100 mA cm-2) at -1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4 + yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.

2.
Small ; 16(12): e1903753, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31565857

RESUMO

Colloidal liquid metal alloys of gallium, with melting points below room temperature, are potential candidates for creating electrically conductive and flexible composites. However, inclusion of liquid metal micro- and nanodroplets into soft polymeric matrices requires a harsh auxiliary mechanical pressing to rupture the droplets to establish continuous pathways for high electrical conductivity. However, such a destructive strategy reduces the integrity of the composites. Here, this problem is solved by incorporating small loading of nonfunctionalized graphene flakes into the composites. The flakes introduce cavities that are filled with liquid metal after only relatively mild press-rolling (<0.1 MPa) to form electrically conductive continuous pathways within the polymeric matrix, while maintaining the integrity and flexibility of the composites. The composites are characterized to show that even very low graphene loadings (≈0.6 wt%) can achieve high electrical conductivity. The electrical conductance remains nearly constant, with changes less than 0.5%, even under a relatively high applied pressure of >30 kPa. The composites are used for forming flexible electrically-conductive tracks in electronic circuits with a self-healing property. The demonstrated application of co-fillers, together with liquid metal droplets, can be used for establishing electrically-conductive printable-composite tracks for future large-area flexible electronics.

3.
Proc Natl Acad Sci U S A ; 113(40): 11088-11093, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647890

RESUMO

Graphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young's modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. Characterizations are performed by the combination of synchrotron X-ray diffraction at small angles and in situ rheology (rheo-SAXS) experiments using the high X-ray flux of a synchrotron source. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. This superflexibility compares with the fluidity of self-assembled liquid bilayers. This behavior is discussed by considering the mechanisms at play in bending and stretching deformations of atomic monolayers. The superflexibility of GO is a unique feature to develop bendable electronics after reduction, films, coatings, and fibers. This unique combination of properties of GO allows for flexibility in processing and fabrication coupled with a robustness in the fabricated structure.

4.
Analyst ; 143(1): 215-223, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29119152

RESUMO

This work presents a study on a capacitively coupled contactless conductivity detector (C4D) for micron-sized fibers. Following a previous report on the qualitative application of C4D for fibers, the present study provides a thorough analysis of the signal response to fiber conductivity. Using reduced graphene oxide (RGO) fibers, the detector response as a function of fiber length, cross-sectional area and resistance has been investigated. To study the effect of insulating coatings, Parylene-coated RGO fibers were also investigated. In addition, measurements were performed in different coupling environments, such as in a capillary tube or air. The analysis of the measured data allowed the determination of the C4D conductivity of various RGO fibers, and the correlation with contact methods through empirical relationships to be determined. It was found that the detection limit and sensitivity of resistance measurements are mainly dependent on the sensor design, and also on the fiber properties. The detection threshold can be defined as the ratio of the coupling impedance to fiber resistance. In our case, the detection limit was found for impedance ratios equal to 14. This limit sets a functioning mode in C4D for fibers, which may be used as an area or resistance detector for the impedance ratio above or below the detection threshold. A semi-log linear response of the fiber resistance to the voltage output was found for impedance ratios between 2.66 and 0.63. These impedance ratios may serve as a reference for designing C4D, depending on the fibers to be tested and the analytical information needed. In summary, we suggest that C4D has the capacity to emerge as a new characterisation tool for micron-sized fibers, due to its applicability to any conductive material, ease of use, and the contactless nature of the measurement.

5.
Chemistry ; 22(40): 14158-61, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27464300

RESUMO

The efficient and selective catalytic reduction of CO2 is a highly promising process for both of the storage of renewable energy as well as the production of valuable chemical feedstocks. In this work, we show that the addition of an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, in an aprotic electrolyte containing a proton source and FeTPP, promotes the in situ formation of the [Fe(0) TPP](2-) homogeneous catalyst at a less negative potential, resulting in lower overpotentials for the CO2 reduction (670 mV) and increased kinetics of electron transfer. This co-catalysis exhibits high Faradaic efficiency for CO production (93 %) and turnover number (2 740 000 after 4 hour electrolysis), with a four-fold increase in turnover frequency (TOF) when compared with the standard system without the ionic liquid.

6.
Analyst ; 141(9): 2774-82, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911662

RESUMO

The use of capacitively coupled contactless conductivity detection (C(4)D) for the characterisation of thin conductive graphene fibres, graphene composite fibres, and graphene coated fibrous materials is demonstrated for the first time. Within a few seconds, the non-destructive C(4)D detector provides a profile of the longetudinal physical homogeneity of the fibre, as well as extra information regarding fibre mophology and composition. In addition to the theoretical considerations related to the factors affect the output signal, this work evaluates the properties of graphene fibres using scanning C(4)D following the manufacturing process of wet-spinning. Furthermore, conductive graphene-coated fibrous materials and the effectiveness of the coating and reduction procedures applied could be investigated. Apart from the application of C(4)D in the monitoring of such processes, the feasibility of this small, highly sensitive and rapidly-responsive detector to monitor strain and elasticity responses of conductive and elastomeric composite fibres for applications in motion sensing, biomedical monitoring, and stretchable electronics was also demonstrated.

7.
Adv Mater ; 34(1): e2105789, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34613649

RESUMO

A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co-contributor of silver-gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano-dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2 ) for the capture and conversion of a tonne of CO2 . This green technology presents an economical solution for CO2 emissions.

8.
ACS Nano ; 15(12): 19661-19671, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34783540

RESUMO

Liquid metals (LMs) are electronic liquid with enigmatic interfacial chemistry and physics. These features make them promising materials for driving chemical reactions on their surfaces for designing nanoarchitectonic systems. Herein, we showed the interfacial interaction between eutectic gallium-indium (EGaIn) liquid metal and graphene oxide (GO) for the reduction of both substrate-based and free-standing GO. NanoIR surface mapping indicated the successful removal of carbonyl groups. Based on the gained knowledge, a composite consisting of assembled reduced GO sheets on LM microdroplets (LM-rGO) was developed. The LM enforced Ga3+ coordination within the rGO assembly found to modify the electrochemical interface for selective dopamine sensing by separating the peaks of interfering biologicals. Subsequently, paper-based electrodes were developed and modified with the LM-rGO that presented the compatibility of the assembly with low-cost commercial technologies. The observed interfacial interaction, imparted by LM's interfaces, and electrochemical performance observed for LM-rGO will lead to effective functional materials and electrode modifiers.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Eletroquímicas , Oxirredução
9.
Adv Mater ; 33(43): e2104793, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510605

RESUMO

The introduction of trace impurities within the doping processes of semiconductors is still a technological challenge for the electronics industries. By taking advantage of the selective enrichment of liquid metal interfaces, and harvesting the doped metal oxide semiconductor layers, the complexity of the process can be mitigated and a high degree of control over the outcomes can be achieved. Here, a mechanism of natural filtering for the preparation of doped 2D semiconducting sheets based on the different migration tendencies of metallic elements in the bulk competing for enriching the interfaces is proposed. As a model, liquid metal alloys with different weight ratios of Sn and Bi in the bulk are employed for harvesting Bi2 O3 -doped SnO nanosheets. In this model, Sn shows a much stronger tendency than Bi to occupy surface sites of the Bi-Sn alloys, even at the very high concentrations of Bi in the bulk. This provides the opportunity for creating SnO 2D sheets with tightly controlled Bi2 O3 dopants. By way of example, it is demonstrated how such nanosheets could be made selective to both reducing and oxidizing environmental gases. The process demonstrated here offers significant opportunities for future synthesis and fabrication processes in the electronics industries.

10.
Adv Mater ; 32(18): e1904804, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31762106

RESUMO

It has become apparent that renewable energy sources are plentiful in many, often remote, parts of the world, such that storing and transporting that energy has become the key challenge. For long-distance transportation by pipeline and bulk tanker, a liquid form of energy carrier is ideal, focusing attention on liquid hydrogen and ammonia. Development of high-activity and selectivity electrocatalyst materials to produce these energy carriers by reductive electrochemistry has therefore become an important area of research. Here, recent developments and challenges in the field of electrocatalytic materials for these processes are discussed, including the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the nitrogen reduction reaction (NRR). Some of the mis-steps currently plaguing the nitrogen reduction to ammonia field are highlighted. The rapidly growing roles that in situ/operando and quantum chemical studies can play in new electromaterials discovery are also surveyed.

11.
ACS Nano ; 14(10): 14070-14079, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32916049

RESUMO

Although it remains unexplored, the direct synthesis and expulsion of metals from alloys can offer many opportunities. Here, such a phenomenon is realized electrochemically by applying a polarizing voltage signal to liquid alloys. The signal induces an abrupt interfacial perturbation at the Ga-based liquid alloy surface and results in an unrestrained discharge of minority elements, such as Sn, In, and Zn, from the liquid alloy. We show that this can occur by either changing the surface tension or inducing a reversible redox reaction at the alloys' interface. The expelled metals exhibit nanosized and porous morphologies, and depending on the cell electrochemistry, these metals can be passivated with oxide layers or fully oxidized into distinct nanostructures. The proposed concept of metal expulsion from liquid alloys can be extended to a wide variety of molten metals for producing metallic and metallic compound nanostructures for advanced applications.

12.
Adv Mater ; 32(29): e2001997, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510699

RESUMO

Room-temperature synthesis of 2D graphitic materials (2D-GMs) remains an elusive aim, especially with electrochemical means. Here, it is shown that liquid metals render this possible as they offer catalytic activity and an ultrasmooth templating interface that promotes Frank-van der Merwe regime growth, while allowing facile exfoliation due to the absence of interfacial forces as a nonpolar liquid. The 2D-GMs are formed at low onset potential and can be in situ doped depending on the choice of organic precursors and the electrochemical set-up. The materials are tuned to exhibit porous or pinhole-free morphologies and are engineered for their degree of oxidation and number of layers. The proposed liquid-metal-based room-temperature electrochemical route can be expanded to many other 2D materials.

13.
ACS Appl Mater Interfaces ; 11(50): 46746-46755, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31738045

RESUMO

Freestanding flexible electrodes with high areal mass loading are required for the development of flexible high-performance lithium-ion batteries (LIBs). Currently they face the challenge of low mass loading due to the limited concentrations attainable in processable dispersions. Here, we report a simple low-temperature hydrothermal route to fabricate flexible layered molybdenum disulfide (MoS2)/reduced graphene oxide (MSG) films offering high areal capacity and good lithium storage performance. This is achieved using a self-assembly process facilitated by the use of liquid crystalline graphene oxide (LCGO) and commercial MoS2 powders at a low temperature of 70 °C. The amphiphilic properties of ultralarge LCGO nanosheets facilitates the processability of large-size MoS2 powders, which is otherwise nondispersible in water. The resultant film with an areal mass of 8.2 mg cm-2 delivers a high areal capacity of 5.80 mAh cm-2 (706 mAh g-1) at 0.1 A g-1. This simple method can be adapted to similar nondispersible commercial battery materials for films fabrication or production of more complicated constructs via advanced fabrication technologies.

14.
Adv Mater ; 31(15): e1805867, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30803072

RESUMO

Fabrication of flexible and free-standing graphene-fiber- (GF-) based microelectrode arrays with a thin platinum coating, acting as a current collector, results in a structure with low impedance, high surface area, and excellent electrochemical properties. This modification results in a strong synergistic effect between these two constituents leading to a robust and superior hybrid material with better performance than either graphene electrodes or Pt electrodes. The low impedance and porous structure of the GF results in an unrivalled charge injection capacity of 10.34 mC cm-2 with the ability to record and detect neuronal activity. Furthermore, the thin Pt layer transfers the collected signals along the microelectrode efficiently. In vivo studies show that microelectrodes implanted in the rat cerebral cortex can detect neuronal activity with remarkably high signal-to-noise ratio (SNR) of 9.2 dB in an area as small as an individual neuron.

15.
Nat Commun ; 10(1): 1367, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894529

RESUMO

The original version of this Article contained errors in the author affiliations. Affiliation 1 incorrectly read 'School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2031, Australia' and affiliation 4 incorrectly read 'School of Engineering, RMIT University, Melbourne, VIC 3001, Australia.' This has now been corrected in both the PDF and HTML versions of the Article.

16.
Nat Commun ; 10(1): 865, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808867

RESUMO

Negative carbon emission technologies are critical for ensuring a future stable climate. However, the gaseous state of CO2 does render the indefinite storage of this greenhouse gas challenging. Herein, we created a liquid metal electrocatalyst that contains metallic elemental cerium nanoparticles, which facilitates the electrochemical reduction of CO2 to layered solid carbonaceous species, at a low onset potential of -310 mV vs CO2/C. We exploited the formation of a cerium oxide catalyst at the liquid metal/electrolyte interface, which together with cerium nanoparticles, promoted the room temperature reduction of CO2. Due to the inhibition of van der Waals adhesion at the liquid interface, the electrode was remarkably resistant to deactivation via coking caused by solid carbonaceous species. The as-produced solid carbonaceous materials could be utilised for the fabrication of high-performance capacitor electrodes. Overall, this liquid metal enabled electrocatalytic process at room temperature may result in a viable negative emission technology.

17.
Nat Commun ; 9(1): 5070, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498194

RESUMO

Silicon-based impurities are ubiquitous in natural graphite. However, their role as a contaminant in exfoliated graphene and their influence on devices have been overlooked. Herein atomic resolution microscopy is used to highlight the existence of silicon-based contamination on various solution-processed graphene. We found these impurities are extremely persistent and thus utilising high purity graphite as a precursor is the only route to produce silicon-free graphene. These impurities are found to hamper the effective utilisation of graphene in whereby surface area is of paramount importance. When non-contaminated graphene is used to fabricate supercapacitor microelectrodes, a capacitance value closest to the predicted theoretical capacitance for graphene is obtained. We also demonstrate a versatile humidity sensor made from pure graphene oxide which achieves the highest sensitivity and the lowest limit of detection ever reported. Our findings constitute a vital milestone to achieve commercially viable and high performance graphene-based devices.

18.
Nanoscale ; 8(4): 1910-4, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26754398

RESUMO

Due to excellent electrical and mechanical properties of carbon nano materials, it is of great interest to fabricate flexible, high conductive, and shape engineered carbon based fibers. As part of these approaches, hollow, twist, ribbon, and other various shapes of carbon based fibers have been researched for various functionality and application. In this paper, we suggest simple and effective method to control the fiber shape. We fabricate the three different shapes of hollow, twisted, and ribbon shaped fibers from wet spun giant graphene oxide (GGO)/single walled-nanotubes (SWNTs)/poly(vinyl alcohol) (PVA) gels. Each shaped fibers exhibit different mechanical properties. The average specific strengthes of the hollow, twist, and ribbon fibers presented here are 126.5, 106.9, and 38.0 MPa while strain are 9.3, 13.5, and 5%, respectively. Especially, the ribbon fiber shows high electrical conductivity (524 ± 64 S cm(-1)) and areal capacitance (2.38 mF cm(-2)).

19.
Nanoscale ; 8(38): 16862-16867, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722479

RESUMO

Herein, we show properly engineered MoS2 crystals can readily form liquid crystalline dispersions in water making them ideal candidates for large-scale manufacturing processes. The guideline provided here can serve as the basis to develop practical protocols to address the long-standing goal of large-scale manufacturing of 2D materials.

20.
Sci Rep ; 5: 17045, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26586106

RESUMO

Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA