RESUMO
BACKGROUND: Globally, key subpopulations such as healthcare workers (HCW) may have a higher risk of contracting SARS-CoV-2. In Uganda, limited access to Personal Protective Equipment and lack of clarity on the extent/pattern of community spread may exacerbate this situation. The country established infection prevention/control measures such as lockdowns and proper hand hygiene. However, due to resource limitations and fatigue, compliance is low, posing continued onward transmission risk. This study aimed to describe extent of SARS-CoV-2 seroprevalence in selected populations within the Rakai region of Uganda. METHODS: From 30th November 2020 to 8th January 2021, we collected venous blood from 753 HCW at twenty-six health facilities in South-Central Uganda and from 227 population-cohort participants who reported specific COVID-19 like symptoms (fever, cough, loss of taste and appetite) in a prior phone-based survey conducted (between May and August 2020) during the first national lockdown. 636 plasma specimens collected from individuals considered high risk for SARS-CoV-2 infection, prior to the first confirmed COVID-19 case in Uganda were also retrieved. Specimens were tested for antibodies to SARS-CoV-2 using the CoronaChek™ rapid COVID-19 IgM/IgG lateral flow test assay. IgM only positive samples were confirmed using a chemiluminescent microparticle immunoassay (CMIA) (Architect AdviseDx SARS-CoV-2 IgM) which targets the spike protein. SARS-CoV-2 exposure was defined as either confirmed IgM, both IgM and IgG or sole IgG positivity. Overall seroprevalence in each participant group was estimated, adjusting for test performance. RESULTS: The seroprevalence of antibodies to SARS-CoV-2 in HCW was 26.7% [95%CI: 23.5, 29.8] with no difference by sex, age, or cadre. We observed no association between PPE use and seropositivity among exposed healthcare workers. Of the phone-based survey participants, 15.6% [95%CI: 10.9, 20.3] had antibodies to SARS-CoV-2, with no difference by HIV status, sex, age, or occupation. Among 636 plasma specimens collected prior to the first confirmed COVID-19 case, 2.3% [95%CI: 1.2, 3.5] were reactive. CONCLUSIONS: Findings suggest high seroprevalence of antibodies to SARS-CoV-2 among HCW and substantial exposure in persons presenting with specific COVID-19 like symptoms in the general population of South-Central Uganda. Based on current limitations in serological test confirmation, it remains unclear whether seroprevalence among plasma specimens collected prior to confirmation of the first COVID-19 case implies prior SARS-CoV-2 exposure in Uganda.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Controle de Doenças Transmissíveis , Pessoal de Saúde , Humanos , Estudos Soroepidemiológicos , Uganda/epidemiologiaRESUMO
The primary obstacle to curing HIV-1 is a reservoir of CD4+ cells that contain stably integrated provirus. Previous studies characterizing the proviral landscape, which have been predominantly conducted in males in the United States and Europe living with HIV-1 subtype B, have revealed that most proviruses that persist during antiretroviral therapy (ART) are defective. In contrast, less is known about proviral landscapes in females with non-B subtypes, which represents the largest group of individuals living with HIV-1. Here, we analyze genomic DNA from resting CD4+ T-cells from 16 female and seven male Ugandans with HIV-1 receiving suppressive ART (n = 23). We perform near-full-length proviral sequencing at limiting dilution to examine the proviral genetic landscape, yielding 607 HIV-1 subtype A1, D, and recombinant proviral sequences (mean 26/person). We observe that intact genomes are relatively rare and clonal expansion occurs in both intact and defective genomes. Our modification of the primers and probes of the Intact Proviral DNA Assay (IPDA), developed for subtype B, rescues intact provirus detection in Ugandan samples for which the original IPDA fails. This work will facilitate research on HIV-1 persistence and cure strategies in Africa, where the burden of HIV-1 is heaviest.
Assuntos
Linfócitos T CD4-Positivos , Genoma Viral , Infecções por HIV , HIV-1 , Provírus , Humanos , HIV-1/genética , HIV-1/efeitos dos fármacos , HIV-1/classificação , Provírus/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Masculino , Feminino , Genoma Viral/genética , Linfócitos T CD4-Positivos/virologia , Adulto , DNA Viral/genética , Uganda , Carga Viral , Fármacos Anti-HIV/uso terapêuticoRESUMO
BACKGROUND: The principal barrier to an HIV cure is the presence of the latent viral reservoir (LVR), which has been understudied in African populations. From 2018 to 2019, Uganda instituted a nationwide rollout of ART consisting of Dolutegravir (DTG) with two NRTI, which replaced the previous regimen of one NNRTI and the same two NRTI. METHODS: Changes in the inducible replication-competent LVR (RC-LVR) of ART-suppressed Ugandans with HIV (n = 88) from 2015 to 2020 were examined using the quantitative viral outgrowth assay. Outgrowth viruses were examined for viral evolution. Changes in the RC-LVR were analyzed using three versions of a Bayesian model that estimated the decay rate over time as a single, linear rate (model A), or allowing for a change at time of DTG initiation (model B&C). FINDINGS: Model A estimated the slope of RC-LVR change as a non-significant positive increase, which was due to a temporary spike in the RC-LVR that occurred 0-12 months post-DTG initiation (p < 0.005). This was confirmed with models B and C; for instance, model B estimated a significant decay pre-DTG initiation with a half-life of 6.9 years, and an â¼1.7-fold increase in the size of the RC-LVR post-DTG initiation. There was no evidence of viral failure or consistent evolution in the cohort. INTERPRETATION: These data suggest that the change from NNRTI- to DTG-based ART is associated with a significant temporary increase in the circulating RC-LVR. FUNDING: Supported by the NIH (grant 1-UM1AI164565); Gilead HIV Cure Grants Program (90072171); Canadian Institutes of Health Research (PJT-155990); and Ontario Genomics-Canadian Statistical Sciences Institute.
Assuntos
População da África Oriental , Infecções por HIV , Inibidores de Integrase de HIV , HIV-1 , Humanos , Antirretrovirais/uso terapêutico , Teorema de Bayes , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Carga Viral , Latência ViralRESUMO
To date, an affordable, effective treatment for an HIV-1 cure remains only a concept with most "latency reversal" agents (LRAs) lacking specificity for the latent HIV-1 reservoir and failing in early clinical trials. We assessed HIV-1 latency reversal using a multivalent HIV-1-derived virus-like particle (HLP) to treat samples from 32 people living with HIV-1 (PLWH) in Uganda, US and Canada who initiated combined antiretroviral therapy (cART) during chronic infection. Even after 5-20 years on stable cART, HLP could target CD4+ T cells harbouring latent HIV-1 reservoir resulting in 100-fold more HIV-1 release into culture supernatant than by common recall antigens, and 1000-fold more than by chemotherapeutic LRAs. HLP induced release of a divergent and replication-competent HIV-1 population from PLWH on cART. These findings suggest HLP provides a targeted approach to reactivate the majority of latent HIV-1 proviruses among individuals infected with HIV-1.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Latência Viral , Linfócitos T CD4-Positivos , CanadáRESUMO
The timing of the establishment of the HIV latent viral reservoir (LVR) is of particular interest, as there is evidence that proviruses are preferentially archived at the time of antiretroviral therapy (ART) initiation. Quantitative viral outgrowth assays (QVOAs) were performed using Peripheral Blood Mononuclear Cells (PBMC) collected from Ugandans living with HIV who were virally suppressed on ART for >1 year, had known seroconversion windows, and at least two archived ART-naïve plasma samples. QVOA outgrowth populations and pre-ART plasma samples were deep sequenced for the pol and gp41 genes. The bayroot program was used to estimate the date that each outgrowth virus was incorporated into the reservoir. Bayroot was also applied to previously published data from a South African cohort. In the Ugandan cohort (n = 11), 87.9 per cent pre-ART and 56.3 per cent viral outgrowth sequences were unique. Integration dates were estimated to be relatively evenly distributed throughout viremia in 9/11 participants. In contrast, sequences from the South African cohort (n = 9) were more commonly estimated to have entered the LVR close to ART initiation, as previously reported. Timing of LVR establishment is variable between populations and potentially viral subtypes, which could limit the effectiveness of interventions that target the LVR only at ART initiation.
RESUMO
The principal barrier to an HIV cure is the presence of a latent viral reservoir (LVR) made up primarily of latently infected resting CD4+ (rCD4) T-cells. Studies in the United States have shown that the LVR decays slowly (half-life=3.8 years), but this rate in African populations has been understudied. This study examined longitudinal changes in the inducible replication competent LVR (RC-LVR) of ART-suppressed Ugandans living with HIV (n=88) from 2015-2020 using the quantitative viral outgrowth assay, which measures infectious units per million (IUPM) rCD4 T-cells. In addition, outgrowth viruses were examined with site-directed next-generation sequencing to assess for possible ongoing viral evolution. During the study period (2018-19), Uganda instituted a nationwide rollout of first-line ART consisting of Dolutegravir (DTG) with two NRTI, which replaced the previous regimen that consisted of one NNRTI and the same two NRTI. Changes in the RC-LVR were analyzed using two versions of a novel Bayesian model that estimated the decay rate over time on ART as a single, linear rate (model A) or allowing for an inflection at time of DTG initiation (model B). Model A estimated the population-level slope of RC-LVR change as a non-significant positive increase. This positive slope was due to a temporary increase in the RC-LVR that occurred 0-12 months post-DTG initiation (p<0.0001). This was confirmed with model B, which estimated a significant decay pre-DTG initiation with a half-life of 7.7 years, but a significant positive slope post-DTG initiation leading to a transient estimated doubling-time of 8.1 years. There was no evidence of viral failure in the cohort, or consistent evolution in the outgrowth sequences associated with DTG initiation. These data suggest that either the initiation of DTG, or cessation of NNRTI use, is associated with a significant temporary increase in the circulating RC-LVR.
RESUMO
Background: Globally, key subpopulations such as healthcare workers (HCWs) have a higher risk of contracting SARS-CoV-2. In Uganda, limited access to personal protective equipment amidst lack of clarity on the extent and pattern of the community disease burden may exacerbate this situation. We assessed SARS-CoV-2 antibody seroprevalence among high-risk sub-populations in South-central Uganda, including HCWs, persons within the general population previously reporting experiencing key COVID-19 like symptoms (fever, cough, loss of taste and smell) and archived plasma specimens collected between October 2019 â" 18 th March 2020, prior to confirmation of COVID-19 in Uganda. Methods: From November 2020 - January 2021, we collected venous blood from HCWs at selected health facilities in South-Central Uganda and from population-cohort participants who reported specific COVID-19 like symptoms in a prior phone-based survey conducted (between May to August 2020) during the first national lockdown. Pre-lockdown plasma collected (between October 2019 and March 18 th , 2020) from individuals considered high risk for SARS-CoV-2 infection was retrieved. Specimens were tested for antibodies to SARS-CoV-2 using the CoronaChek TM rapid COVID-19 IgM/IgG lateral flow test assay. IgM only positive samples were confirmed using a chemiluminescent microparticle immunoassay (CMIA) (Architect AdviseDx SARS-CoV-2 IgM) which targets the spike protein. SARS-CoV-2 exposure was defined as either confirmed IgM, both IgM and IgG or sole IgG positivity. Results: The seroprevalence of antibodies to SARS-CoV-2 in HCWs was 21.1% [95%CI: 18.2-24.2]. Of the phone-based survey participants, 11.9% [95%CI: 8.0-16.8] had antibodies to SARS-CoV-2. Among 636 pre-lockdown plasma specimens, 1.7% [95%CI: 0.9-3.1] were reactive. Conclusions: Findings suggest a high seroprevalence of antibodies to SARS-CoV-2 among HCWs and substantial exposure in persons presenting with specific COVID-19 like symptoms in the general population of South-central Uganda. Based on current limitations in serological test confirmation, it remains unclear whether pre-lockdown seropositivity implies prior SARS-CoV-2 exposure in Uganda.