Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 585(7823): E1, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32814906

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 582(7811): 214-218, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32528090

RESUMO

Design-specific control over excited-state dynamics is necessary for any application seeking to convert light into chemical potential. Such control is especially desirable in iron(II)-based chromophores, which are an Earth-abundant option for a wide range of photo-induced electron-transfer applications including solar energy conversion1 and catalysis2. However, the sub-200-femtosecond lifetimes of the redox-active metal-to-ligand charge transfer (MLCT) excited states typically encountered in these compounds have largely precluded their widespread use3. Here we show that the MLCT lifetime of an iron(II) complex can be manipulated using information from excited-state quantum coherences as a guide to implementing synthetic modifications that can disrupt the reaction coordinate associated with MLCT decay. We developed a structurally tunable molecular platform in which vibronic coherences-that is, coherences reflecting a coupling of vibrational and electronic degrees of freedom-were observed in ultrafast time-resolved absorption measurements after MLCT excitation of the molecule. Following visualization of the vibrational modes associated with these coherences, we synthetically modified an iron(II) chromophore to interfere with these specific atomic motions. The redesigned compound exhibits a MLCT lifetime that is more than a factor of 20 longer than that of the parent compound, indicating that the structural modification at least partially decoupled these degrees of freedom from the population dynamics associated with the electronic-state evolution of the system. These results demonstrate that using excited-state coherence data may be used to tailor ultrafast excited-state dynamics through targeted synthetic design.

3.
Inorg Chem ; 58(14): 9341-9350, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31241335

RESUMO

We have employed a range of ultrafast X-ray spectroscopies in an effort to characterize the lowest energy excited state of [Fe(dcpp)2]2+ (where dcpp is 2,6-(dicarboxypyridyl)pyridine). This compound exhibits an unusually short excited-state lifetime for a low-spin Fe(II) polypyridyl complex of 270 ps in a room-temperature fluid solution, raising questions as to whether the ligand-field strength of dcpp had pushed this system beyond the 5T2/3T1 crossing point and stabilizing the latter as the lowest energy excited state. Kα and Kß X-ray emission spectroscopies have been used to unambiguously determine the quintet spin multiplicity of the long-lived excited state, thereby establishing the 5T2 state as the lowest energy excited state of this compound. Geometric changes associated with the photoinduced ligand-field state conversion have also been monitored with extended X-ray absorption fine structure. The data show the typical average Fe-ligand bond length elongation of ∼0.18 Å for a 5T2 state and suggest a high anisotropy of the primary coordination sphere around the metal center in the excited 5T2 state, in stark contrast to the nearly perfect octahedral symmetry that characterizes the low-spin 1A1 ground state structure. This study illustrates how the application of time-resolved X-ray techniques can provide insights into the electronic structures of molecules-in particular, transition metal complexes-that are difficult if not impossible to obtain by other means.

4.
Inorg Chem ; 53(1): 15-7, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24341550

RESUMO

Electronic structure theory predicts that, depending on the strength of the ligand field, either the quintet ((5)T2) or triplet ((3)T1) term states can be stabilized as the lowest-energy ligand-field excited state of low-spin octahedral d(6) transition-metal complexes. The (3)T1 state is anticipated for second- and third-row metal complexes and has been established for certain first-row compounds such as [Co(CN)6](3-), but in the case of the widely studied Fe(II) ion, only the (5)T2 state has ever been documented. Herein we report that 2,6-bis(2-carboxypyridyl)pyridine (dcpp), when bound to Fe(II), presents a sufficiently strong ligand field to Fe(II) such that the (5)T2/(3)T1 crossing point of the d(6) configuration is approached if not exceeded. The electrochemical and photophysical properties of [Fe(dcpp)2](2+), in addition to being of fundamental interest, may also have important implications for solar energy conversion strategies that seek to utilize earth-abundant components.

5.
J Am Chem Soc ; 132(19): 6809-16, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20426414

RESUMO

Solution-phase photoinduced low-spin to high-spin conversion in the Fe(II) polypyridyl complex [Fe(tren(py)(3))](2+) (where tren(py)(3) is tris(2-pyridylmethyliminoethyl)amine) has been studied via picosecond soft X-ray spectroscopy. Following (1)A(1) --> (1)MLCT (metal-to-ligand charge transfer) excitation at 560 nm, changes in the iron L(2)- and L(3)-edges were observed concomitant with formation of the transient high-spin (5)T(2) state. Charge-transfer multiplet calculations coupled with data acquired on low-spin and high-spin model complexes revealed a reduction in ligand field splitting of approximately 1 eV in the high-spin state relative to the singlet ground state. A significant reduction in orbital overlap between the central Fe-3d and the ligand N-2p orbitals was directly observed, consistent with the expected ca. 0.2 A increase in Fe-N bond length upon formation of the high-spin state. The overall occupancy of the Fe-3d orbitals remains constant upon spin crossover, suggesting that the reduction in sigma-donation is compensated by significant attenuation of pi-back-bonding in the metal-ligand interactions. These results demonstrate the feasibility and unique potential of time-resolved soft X-ray absorption spectroscopy to study ultrafast reactions in the liquid phase by directly probing the valence orbitals of first-row metals as well as lighter elements during the course of photochemical transformations.

6.
Faraday Discuss ; 157: 463-74; discussion 475-500, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23230783

RESUMO

Ultrafast excited-state evolution in polypyridyl Fe(II) complexes is of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved X-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpins the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these X-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the X-ray water window.

7.
J Phys Chem Lett ; 2(8): 880-4, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26295622

RESUMO

We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)](2+), where the ultrafast spin-state conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA