Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(4): e29600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591240

RESUMO

The lower respiratory system serves as the target and barrier for beta-coronavirus (beta-CoV) infections. In this study, we explored beta-CoV infection dynamics in human bronchial epithelial (HBE) organoids, focusing on HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2. Utilizing advanced organoid culture techniques, we observed robust replication for all beta-CoVs, particularly noting that SARS-CoV-2 reached peak viral RNA levels at 72 h postinfection. Through comprehensive transcriptomic analysis, we identified significant shifts in cell population dynamics, marked by an increase in goblet cells and a concurrent decrease in ciliated cells. Furthermore, our cell tropism analysis unveiled distinct preferences in viral targeting: HCoV-OC43 predominantly infected club cells, while SARS-CoV had a dual tropism for goblet and ciliated cells. In contrast, SARS-CoV-2 primarily infected ciliated cells, and MERS-CoV showed a marked affinity for goblet cells. Host factor analysis revealed the upregulation of genes encoding viral receptors and proteases. Notably, HCoV-OC43 induced the unfolded protein response pathway, which may facilitate viral replication. Our study also reveals a complex interplay between inflammatory pathways and the suppression of interferon responses during beta-CoV infections. These findings provide insights into host-virus interactions and antiviral defense mechanisms, contributing to our understanding of beta-CoV infections in the respiratory tract.


Assuntos
Coronavirus Humano OC43 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Linhagem Celular , Brônquios , SARS-CoV-2 , Interferons , Organoides
2.
Virus Evol ; 10(1): veae054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119138

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) poses a significant public health challenge in East Asia, necessitating a deeper understanding of its evolutionary dynamics to effectively manage its spread and pathogenicity. This study provides a comprehensive analysis of the genetic diversity, recombination patterns, and selection pressures across the SFTSV genome, utilizing an extensive dataset of 2041 sequences from various hosts and regions up to November 2023. Employing maximum likelihood and Bayesian evolutionary analysis by sampling trees (BEAST), we elucidated the phylogenetic relationships among nine distinct SFTSV genotypes (A, B1, B2, B3, B4, C, D, E, and F), revealing intricate patterns of viral evolution and genotype distribution across China, South Korea, and Japan. Furthermore, our analysis identified 34 potential reassortments, underscoring a dynamic genetic interplay among SFTSV strains. Genetic recombination was observed most frequently in the large segment and least in the small segment, with notable recombination hotspots characterized by stem-loop hairpin structures, indicative of a structural propensity for genetic recombination. Additionally, selection pressure analysis on critical viral genes indicated a predominant trend of negative selection, with specific sites within the RNA-dependent RNA polymerase and glycoprotein genes showing positive selection. These sites suggest evolutionary adaptations to host immune responses and environmental pressures. This study sheds light on the intricate evolutionary mechanisms shaping SFTSV, offering insights into its adaptive strategies and potential implications for vaccine development and therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA