Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 100(2): 695-724, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751165

RESUMO

Physical stimuli are essential for the function of eukaryotic cells, and changes in physical signals are important elements in normal tissue development as well as in disease initiation and progression. The complexity of physical stimuli and the cellular signals they initiate are as complex as those triggered by chemical signals. One of the most important, and the focus of this review, is the effect of substrate mechanical properties on cell structure and function. The past decade has produced a nearly exponentially increasing number of mechanobiological studies to define how substrate stiffness alters cell biology using both purified systems and intact tissues. Here we attempt to identify common features of mechanosensing in different systems while also highlighting the numerous informative exceptions to what in early studies appeared to be simple rules by which cells respond to mechanical stresses.


Assuntos
Microambiente Celular , Mecanotransdução Celular , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Forma Celular , Elasticidade , Humanos , Viscosidade
2.
Nature ; 584(7822): 535-546, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848221

RESUMO

Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.


Assuntos
Elasticidade , Matriz Extracelular/metabolismo , Substâncias Viscoelásticas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células , Forma Celular , Matriz Extracelular/química , Humanos , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Medicina Regenerativa
3.
Proc Natl Acad Sci U S A ; 120(16): e2216811120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036981

RESUMO

Matrix stiffening and external mechanical stress have been linked to disease and cancer development in multiple tissues, including the liver, where cirrhosis (which increases stiffness markedly) is the major risk factor for hepatocellular carcinoma. Patients with nonalcoholic fatty liver disease and lipid droplet-filled hepatocytes, however, can develop cancer in noncirrhotic, relatively soft tissue. Here, by treating primary human hepatocytes with the monounsaturated fatty acid oleate, we show that lipid droplets are intracellular mechanical stressors with similar effects to tissue stiffening, including nuclear deformation, chromatin condensation, and impaired hepatocyte function. Mathematical modeling of lipid droplets as inclusions that have only mechanical interactions with other cellular components generated results consistent with our experiments. These data show that lipid droplets are intracellular sources of mechanical stress and suggest that nuclear membrane tension integrates cell responses to combined internal and external stresses.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Gotículas Lipídicas/metabolismo , Hepatócitos/patologia , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Neoplasias Hepáticas/patologia , Metabolismo dos Lipídeos/fisiologia
4.
Cell ; 143(6): 966-77, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145462

RESUMO

Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to "coincidence detection," allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.


Assuntos
Fosfolipídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Quinases Ciclina-Dependentes/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
5.
Nature ; 573(7772): 96-101, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462779

RESUMO

The viscoelasticity of the crosslinked semiflexible polymer networks-such as the internal cytoskeleton and the extracellular matrix-that provide shape and mechanical resistance against deformation is assumed to dominate tissue mechanics. However, the mechanical responses of soft tissues and semiflexible polymer gels differ in many respects. Tissues stiffen in compression but not in extension1-5, whereas semiflexible polymer networks soften in compression and stiffen in extension6,7. In shear deformation, semiflexible polymer gels stiffen with increasing strain, but tissues do not1-8. Here we use multiple experimental systems and a theoretical model to show that a combination of nonlinear polymer network elasticity and particle (cell) inclusions is essential to mimic tissue mechanics that cannot be reproduced by either biopolymer networks or colloidal particle systems alone. Tissue rheology emerges from an interplay between strain-stiffening polymer networks and volume-conserving cells within them. Polymer networks that soften in compression but stiffen in extension can be converted to materials that stiffen in compression but not in extension by including within the network either cells or inert particles to restrict the relaxation modes of the fibrous networks that surround them. Particle inclusions also suppress stiffening in shear deformation; when the particle volume fraction is low, they have little effect on the elasticity of the polymer networks. However, as the particles become more closely packed, the material switches from compression softening to compression stiffening. The emergence of an elastic response in these composite materials has implications for how tissue stiffness is altered in disease and can lead to cellular dysfunction9-11. Additionally, the findings could be used in the design of biomaterials with physiologically relevant mechanical properties.


Assuntos
Fenômenos Biomecânicos , Biopolímeros/química , Contagem de Células , Matriz Extracelular/metabolismo , Fibrina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Coagulação Sanguínea , Linhagem Celular , Elasticidade , Eritrócitos/citologia , Fibrina/química , Fibroblastos/citologia , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Reologia
6.
Proc Natl Acad Sci U S A ; 119(15): e2116718119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394874

RESUMO

Cells can sense and respond to mechanical forces in fibrous extracellular matrices (ECMs) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing the intensity of collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen­GAG cogels. We found significantly lower intensities of aligned collagen in collagen­GAG cogels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The role of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs.


Assuntos
Comunicação Celular , Matriz Extracelular , Glicosaminoglicanos , Fenômenos Biomecânicos , Fenômenos Fisiológicos Celulares , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Glicosaminoglicanos/metabolismo , Humanos , Neoplasias
7.
J Biol Chem ; 299(8): 104963, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356720

RESUMO

Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.


Assuntos
Vimentina , Acetilglucosamina/química , Adesão Celular , Movimento Celular , Ácido Hialurônico/química , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Humanos , Linhagem Celular Tumoral
8.
J Cell Sci ; 134(6)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33558312

RESUMO

Vimentin is a structural protein that is required for mesenchymal cell migration and directly interacts with actin, ß1 integrin and paxillin. We examined how these interactions enable vimentin to regulate cell migration on collagen. In fibroblasts, depletion of vimentin increased talin-dependent activation of ß1 integrin by more than 2-fold. Loss of vimentin was associated with reduction of ß1 integrin clustering by 50% and inhibition of paxillin recruitment to focal adhesions by more than 60%, which was restored by vimentin expression. This reduction of paxillin was associated with 65% lower Cdc42 activation, a 60% reduction of cell extension formation and a greater than 35% decrease in cell migration on collagen. The activation of PAK1, a downstream effector of Cdc42, was required for vimentin phosphorylation and filament maturation. We propose that vimentin tunes cell migration through collagen by acting as an adaptor protein for focal adhesion proteins, thereby regulating ß1 integrin activation, resulting in well-organized, mature integrin clusters.This article has an associated First Person interview with the first author of the paper.


Assuntos
Colágeno , Integrina beta1 , Adesão Celular , Movimento Celular , Análise por Conglomerados , Integrina beta1/genética , Integrina beta1/metabolismo , Paxilina/genética , Paxilina/metabolismo , Vimentina/genética , Vimentina/metabolismo
9.
Biochem J ; 479(17): 1825-1842, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36094371

RESUMO

Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.


Assuntos
Citoesqueleto , Transdução de Sinais , Membrana Celular , Citoesqueleto/metabolismo , Microtúbulos
10.
Proc Natl Acad Sci U S A ; 117(35): 21037-21044, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817547

RESUMO

Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.


Assuntos
Força Compressiva/fisiologia , Biologia Computacional/métodos , Biopolímeros/química , Coloides/química , Simulação por Computador , Elasticidade , Corpos de Inclusão/fisiologia , Modelos Químicos , Fenômenos Físicos , Pressão , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA