Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(5): 1214-1231.e16, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636133

RESUMO

Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.


Assuntos
Coinfecção , Nematospiroides dubius/fisiologia , Transdução de Sinais , Infecções por Strongylida/patologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Mucosa Intestinal/parasitologia , Mucosa Intestinal/virologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/parasitologia , Neurônios/virologia , Receptores de Interleucina-4/metabolismo , Fator de Transcrição STAT6/genética , Índice de Gravidade de Doença , Infecções por Strongylida/parasitologia
2.
Cell ; 179(5): 1144-1159.e15, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31708126

RESUMO

The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.


Assuntos
Técnicas de Cultura de Células/métodos , Colo/patologia , Células-Tronco/patologia , Células 3T3 , Animais , Colite/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Modelos Biológicos , Oxigênio/farmacologia , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
3.
FASEB J ; 33(7): 8634-8647, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31090455

RESUMO

Reduced expression of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) in humans and mice causes white matter inflammation and catatonic signs. These consequences are experimentally alleviated by microglia ablation via colony-stimulating factor 1 receptor (CSF1R) inhibition using PLX5622. Here we address for the first time preclinical topics crucial for translation, most importantly 1) the comparison of 2 long-term PLX5622 applications (prevention and treatment) vs. 1 treatment alone, 2) the correlation of catatonic signs and executive dysfunction, 3) the phenotype of leftover microglia evading depletion, and 4) the role of intercellular interactions for efficient CSF1R inhibition. Based on our Cnp-/- mouse model and in vitro time-lapse imaging, we report the unexpected discovery that microglia surviving under PLX5622 display a highly inflammatory phenotype including aggressive premortal phagocytosis of oligodendrocyte precursor cells. Interestingly, ablating microglia in vitro requires mixed glial cultures, whereas cultured pure microglia withstand PLX5622 application. Importantly, 2 extended rounds of CSF1R inhibition are not superior to 1 treatment regarding any readout investigated (magnetic resonance imaging and magnetic resonance spectroscopy, behavior, immunohistochemistry). Catatonia-related executive dysfunction and brain atrophy of Cnp-/- mice fail to improve under PLX5622. To conclude, even though microglia depletion is temporarily beneficial and worth pursuing, complementary treatment strategies are needed for full and lasting recovery.-Fernandez Garcia-Agudo, L., Janova, H., Sendler, L. E., Arinrad, S., Steixner, A. A., Hassouna, I., Balmuth, E., Ronnenberg, A., Schopf, N., van der Flier, F. J., Begemann, M., Martens, H., Weber, M. S., Boretius, S., Nave, K.-A., Ehrenreich, H. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion.


Assuntos
2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , Encéfalo/patologia , Encefalite/genética , Microglia/patologia , Deleção de Sequência/genética , Adulto , Animais , Encéfalo/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Deleção de Sequência/efeitos dos fármacos
4.
Glia ; 66(5): 920-933, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350438

RESUMO

Human mesial temporal lobe epilepsy (MTLE) features subregion-specific hippocampal neurodegeneration and reactive astrogliosis, including up-regulation of the glial fibrillary acidic protein (GFAP) and down-regulation of glutamine synthetase (GS). However, the regional astrocytic expression pattern of GFAP and GS upon MTLE-associated neurodegeneration still remains elusive. We assessed GFAP and GS expression in strict correlation with the local neuronal number in cortical and hippocampal surgical specimens from 16 MTLE patients using immunohistochemistry, stereology and high-resolution image analysis for digital pathology and whole-slide imaging. In the cortex, GS-positive (GS+) astrocytes are dominant in all neuronal layers, with a neuron to GS+ cell ratio of 2:1. GFAP-positive (GFAP+) cells are widely spaced, with a GS+ to GFAP+ cell ratio of 3:1-5:1. White matter astrocytes, on the contrary, express mainly GFAP and, to a lesser extent, GS. In the hippocampus, the neuron to GS+ cell ratio is approximately 1:1. Hippocampal degeneration is associated with a reduction of GS+ astrocytes, which is proportional to the degree of neuronal loss and primarily present in the hilus. Up-regulation of GFAP as a classical hallmark of reactive astrogliosis does not follow the GS-pattern and is prominent in the CA1. Reactive alterations were proportional to the neuronal loss in the neuronal somatic layers (stratum pyramidale and hilus), while observed to a lesser extent in the axonal/dendritic layers (stratum radiatum, molecular layer). We conclude that astrocytic GS is expressed in the neuronal somatic layers and, upon neurodegeneration, is down-regulated proportionally to the degree of neuronal loss.


Assuntos
Astrócitos/enzimologia , Córtex Cerebral/enzimologia , Epilepsia do Lobo Temporal/enzimologia , Glutamato-Amônia Ligase/metabolismo , Neurônios/enzimologia , Adulto , Astrócitos/patologia , Morte Celular/fisiologia , Córtex Cerebral/patologia , Epilepsia Resistente a Medicamentos/enzimologia , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/enzimologia , Gliose/patologia , Humanos , Imuno-Histoquímica , Masculino , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Substância Branca/enzimologia , Substância Branca/patologia
5.
Glia ; 65(7): 1176-1185, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28471051

RESUMO

Microglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock. A putative, naturally occurring antagonist of TLR4 derives from the photosynthetic bacterium Rhodobacter sphaeroides. However, the antagonistic potential of R. sphaeroides LPS (Rs-LPS) is no universal feature, since several studies suggested agonistic rather than antagonistic actions of this molecule depending on the investigated mammalian species. Here we show the agonistic versus antagonistic potential of Rs-LPS in primary mouse microglia. We demonstrate that Rs-LPS efficiently induces the release of cytokines and chemokines, which depends on TLR4, MyD88, and TRIF, but not CD14. Furthermore, Rs-LPS is able to regulate the phagocytic capacity of microglia as agonist, while it antagonizes Re-LPS-induced MHC I expression. Finally, to our knowledge, we are the first to provide in vivo evidence for an agonistic potential of Rs-LPS, as it efficiently triggers the recruitment of peripheral immune cells to the endotoxin-challenged CNS. Together, our results argue for a versatile and complex organization of the microglial TLR4 system, which specifically translates exogenous signals into cellular functions. Importantly, as demonstrated here for microglia, the antagonistic potential of Rs-LPS needs to be considered with caution, as reactions to Rs-LPS not only differ by cell type, but even by function within one cell type.


Assuntos
Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Receptor 4 Toll-Like/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
6.
Glia ; 64(4): 635-49, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26683584

RESUMO

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon ß-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges.


Assuntos
Lesões Encefálicas/imunologia , Isquemia Encefálica/imunologia , Infecções por Escherichia coli/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Microglia/imunologia , Acidente Vascular Cerebral/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Modelos Animais de Doenças , Escherichia coli , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Retroalimentação Fisiológica/fisiologia , Infarto da Artéria Cerebral Média , Interferon beta/metabolismo , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação , Acidente Vascular Cerebral/patologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
Glia ; 63(6): 1083-99, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25731696

RESUMO

The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Tirfostinas/farmacologia , Tirosina Quinase da Agamaglobulinemia , Animais , Células Cultivadas , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Hidrólise , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/fisiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fármacos Neuroprotetores/química , Nitrilas/química , Nitrilas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Baço/citologia , Baço/efeitos dos fármacos , Baço/fisiopatologia , Células Th17/efeitos dos fármacos , Células Th17/patologia , Células Th17/fisiologia , Tirfostinas/química
8.
J Neuroinflammation ; 11: 14, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24456653

RESUMO

BACKGROUND: Prophylaxis with unmethylated cytosine phosphate guanidine (CpG) oligodeoxynucleotides (ODN) protects against several systemic experimental infections. Escherichia coli is a major cause of Gram-negative neonatal bacterial meningitis and also causes meningitis and meningoencephalitis in older and immunocompromised patients. METHODS: Wild-type (wt) and Toll-like receptor 9 (TLR9)-deficient mice were rendered neutropenic by intraperitoneal administration of the anti-Ly-6G monoclonal antibody. Immunocompetent and neutropenic mice received intraperitoneal CpG ODN or vehicle 72 h prior to induction of E. coli K1 meningoencephalitis. RESULTS: Pre-treatment with CpG ODN significantly increased survival of neutropenic wt mice from 33% to 75% (P = 0.0003) but did not protect neutropenic TLR9-/- mice. The protective effect of CpG ODN was associated with an enhanced production of interleukin (IL)-12/IL-23p40 with sustained increased levels in serum and spleen at least for 17 days after conditioning compared to buffer-treated animals. CpG-treated neutropenic wt mice showed reduced bacterial concentrations and increased recruitment of Ly6ChighCCR2+ monocytes in brain and spleen 42 h after infection. The levels of macrophage inflammatory protein 1α (MIP-1α) and interferon gamma (IFN-γ) in spleen were higher 42 h after infection in CpG-treated compared to buffer-treated neutropenic animals. In immunocompetent mice, prophylaxis with CpG ODN did not significantly increase survival compared to the buffer group (60% vs. 45%, P = 0.2). CONCLUSIONS: These findings suggest that systemic administration of CpG ODN may help to prevent bacterial CNS infections in immunocompromised individuals.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Guanidina/química , Oligodesoxirribonucleotídeos/uso terapêutico , Animais , Antígenos CD/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Escherichia coli/fisiologia , Citometria de Fluxo , Meningoencefalite/prevenção & controle , Camundongos , Camundongos Knockout , Baço/microbiologia , Baço/patologia , Receptor Toll-Like 9/deficiência
9.
J Clin Invest ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207863

RESUMO

Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus, West Nile Virus (WNV) and demonstrated intestinal transit defects. Here, we find that within one week of WNV infection, enteric neurons and glia become damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damage the enteric nervous system (ENS) and glia, which leads to intestinal dysmotility; these T cells use multiple and redundant effector functions including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appears to not require infiltrating monocytes and damage may be limited by resident muscularis macrophages. Overall, our experiments support a model whereby antigen specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.

10.
Nat Commun ; 15(1): 246, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172096

RESUMO

Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.


Assuntos
Infecções por Alphavirus , Alphavirus , Vírus da Encefalite Equina do Leste , Cavalos , Animais , Camundongos , Alphavirus/genética , Vírus da Encefalite Equina do Leste/genética , Vírus da Floresta de Semliki/genética , Lipoproteínas LDL
11.
Nat Commun ; 14(1): 5973, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749080

RESUMO

The determinants of severe disease caused by West Nile virus (WNV) and why only ~1% of individuals progress to encephalitis remain poorly understood. Here, we use human and mouse enteroids, and a mouse model of pathogenesis, to explore the capacity of WNV to directly infect gastrointestinal (GI) tract cells and contribute to disease severity. At baseline, WNV poorly infects human and mouse enteroid cultures and enterocytes in mice. However, when STAT1 or type I interferon (IFN) responses are absent, GI tract cells become infected, and this is associated with augmented GI tract and blood-brain barrier (BBB) permeability, accumulation of gut-derived molecules in the brain, and more severe WNV disease. The increased gut permeability requires TNF-α signaling, and is absent in WNV-infected IFN-deficient germ-free mice. To link these findings to human disease, we measured auto-antibodies against type I IFNs in serum from WNV-infected human cohorts. A greater frequency of auto- and neutralizing antibodies against IFN-α2 or IFN-ω is present in patients with severe WNV infection, whereas virtually no asymptomatic WNV-infected subjects have such antibodies (odds ratio 24 [95% confidence interval: 3.0 - 192.5; P = 0.003]). Overall, our experiments establish that blockade of type I IFN signaling extends WNV tropism to enterocytes, which correlates with increased gut and BBB permeability, and more severe disease.


Assuntos
Interferon Tipo I , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Camundongos , Encéfalo , Anticorpos Neutralizantes
12.
Cell Rep ; 42(8): 112946, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37556325

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus responsible for epidemics of neurological disease across the Americas. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) is a recently reported entry receptor for VEEV. Here, using wild-type and Ldlrad3-deficient mice, we define a critical role for LDLRAD3 in controlling steps in VEEV infection, pathogenesis, and neurotropism. Our analysis shows that LDLRAD3 is required for efficient VEEV infection and pathogenesis prior to and after central nervous system invasion. Ldlrad3-deficient mice survive intranasal and intracranial VEEV inoculation and show reduced infection of neurons in different brain regions. As LDLRAD3 is a determinant of pathogenesis and an entry receptor required for VEEV infection of neurons of the brain, receptor-targeted therapies may hold promise as countermeasures.


Assuntos
Encefalomielite Equina Venezuelana , Receptores de LDL , Animais , Camundongos , Encéfalo/patologia , Sistema Nervoso Central , Vírus da Encefalite Equina Venezuelana/fisiologia , Encefalomielite Equina Venezuelana/patologia , Receptores de LDL/fisiologia
13.
Front Mol Neurosci ; 13: 149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132837

RESUMO

A growing body of evidence indicates that microglia actively remove synapses in vivo, thereby playing a key role in synaptic refinement and modulation of brain connectivity. This phenomenon was mainly investigated in immunofluorescence staining and confocal microscopy. However, a quantification of synaptic material in microglia using these techniques is extremely time-consuming and labor-intensive. To address this issue, we aimed to quantify synaptic proteins in microglia using flow cytometry. With this approach, we first showed that microglia from the healthy adult mouse brain contain a detectable level of VGLUT1 protein. Next, we found more than two-fold increased VGLUT1 immunoreactivity in microglia from the developing brain (P15) as compared to adult microglia. These data indicate that microglia-mediated synaptic pruning mostly occurs during the brain developmental period. We then quantified the VGLUT1 staining in microglia in two transgenic models characterized by pathological microglia-mediated synaptic pruning. In the 5xFAD mouse model of Alzheimer's disease (AD) microglia exhibited a significant increase in VGLUT1 immunoreactivity before the onset of amyloid pathology. Moreover, conditional deletion of TDP-43 in microglia, which causes a hyper-phagocytic phenotype associated with synaptic loss, also resulted in increased VGLUT1 immunoreactivity within microglia. This work provides a quantitative assessment of synaptic proteins in microglia, under homeostasis, and in mouse models of disease.

14.
J Clin Invest ; 128(2): 734-745, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29252214

RESUMO

The underlying cellular mechanisms of catatonia, an executive "psychomotor" syndrome that is observed across neuropsychiatric diseases, have remained obscure. In humans and mice, reduced expression of the structural myelin protein CNP is associated with catatonic signs in an age-dependent manner, pointing to the involvement of myelin-producing oligodendrocytes. Here, we showed that the underlying cause of catatonic signs is the low-grade inflammation of white matter tracts, which marks a final common pathway in Cnp-deficient and other mutant mice with minor myelin abnormalities. The inhibitor of CSF1 receptor kinase signaling PLX5622 depleted microglia and alleviated the catatonic symptoms of Cnp mutants. Thus, microglia and low-grade inflammation of myelinated tracts emerged as the trigger of a previously unexplained mental condition. We observed a very high (25%) prevalence of individuals with catatonic signs in a deeply phenotyped schizophrenia sample (n = 1095). Additionally, we found the loss-of-function allele of a myelin-specific gene (CNP rs2070106-AA) associated with catatonia in 2 independent schizophrenia cohorts and also associated with white matter hyperintensities in a general population sample. Since the catatonic syndrome is likely a surrogate marker for other executive function defects, we suggest that microglia-directed therapies may be considered in psychiatric disorders associated with myelin abnormalities.


Assuntos
2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , Catatonia/patologia , Microglia/citologia , Bainha de Mielina/química , Adulto , Fatores Etários , Alelos , Animais , Encéfalo/patologia , Catatonia/prevenção & controle , Feminino , Genótipo , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Oligodendroglia/citologia , Compostos Orgânicos/química , Fenótipo , Prevalência , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Esquizofrenia/genética , Substância Branca/patologia
15.
PLoS One ; 9(8): e104064, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25084094

RESUMO

Adenylate cyclase toxin (CyaA) is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC) enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR)-activated murine and human dendritic cells (DCs). cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4(+) and CD8(+) T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4(+)CD25(+)Foxp3(+) T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8(+) T cell proliferation and limited the induction of IFN-γ producing CD8(+) T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.


Assuntos
Toxina Adenilato Ciclase/farmacologia , Bordetella pertussis/química , Movimento Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/imunologia , Ativação Linfocitária/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Solubilidade , Linfócitos T Reguladores/efeitos dos fármacos
16.
J Neuroimmunol ; 252(1-2): 16-23, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22889567

RESUMO

Increasing the phagocytic activity of microglia could improve the resistance of immunocompromised patients to CNS infections. We studied the microglial responses upon stimulation with the Nod2 ligand muramyl dipeptide (MDP) alone or in combination with a TLR1/2, 3 or 4 agonist. MDP caused a mild release of NO, but induced neither a significant release of pro-inflammatory cytokines nor an expression of molecules associated with professional antigen presentation. Using the Escherichia coli K1 model, microglial pre-stimulation with MDP enhanced bacterial phagocytosis which was strengthened on TLR-pre-stimulated cells. Dual pre-stimulation of Nod2 and TLR1/2 or 4 caused maximal phagocytosis and intracellular killing.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/imunologia , Adjuvantes Imunológicos , Escherichia coli/imunologia , Microglia/imunologia , Fagocitose/imunologia , Receptores Toll-Like/imunologia , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Células Cultivadas , Citotoxicidade Imunológica/imunologia , Infecções por Escherichia coli/imunologia , Citometria de Fluxo , Imunidade Inata/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD2/imunologia , Fagocitose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA