Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Curr Biol ; 10(11): 630-9, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10837245

RESUMO

BACKGROUND: Many signals are transduced from the cell surface to the nucleus through mitogen-activated protein (MAP) kinase cascades. Activation of MAP kinase requires phosphorylation by MEK, which in turn is controlled by Raf, Mos or a group of structurally related kinases termed MEKKs. It is not understood how MEKKs are regulated by extracellular signals. In yeast, the MEKK Ste11p functions in multiple MAP kinase cascades activated in response to pheromones, high osmolarity and nutrient starvation. Genetic evidence suggests that the p21-activated protein kinase (PAK) Ste20p functions upstream of Ste11p, and Ste20p has been shown to phosphorylate Ste11p in vitro. RESULTS: Ste20p phosphorylated Ste11p on Ser302 and/or Ser306 and Thr307 in yeast, residues that are conserved in MEKKs of other organisms. Mutating these sites to non-phosphorylatable residues abolished Ste11p function, whereas changing them to aspartic acid to mimic the phosphorylated form constitutively activated Ste11p in vivo in a Ste20p-independent manner. The amino-terminal regulatory domain of Ste11p interacted with its catalytic domain, and overexpression of a small amino-terminal fragment of Ste11p was able to inhibit signaling in response to pheromones. Mutational analysis suggested that this interaction was regulated by phosphorylation and dependent on Thr596, which is located in the substrate cleft of the catalytic domain. CONCLUSIONS: Our results suggest that, in response to multiple extracellular signals, phosphorylation of Ste11p by Ste20p removes an amino-terminal inhibitory domain, leading to activation of the Ste11 protein kinase. This mechanism may serve as a paradigm for the activation of mammalian MEKKs.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Ciclo Celular , Cruzamentos Genéticos , Proteínas Fúngicas/metabolismo , Glutationa Transferase/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Fosforilação , Plasmídeos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais
2.
Mol Cell Biol ; 20(17): 6244-58, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10938101

RESUMO

Gic2p is a Cdc42p effector which functions during cytoskeletal organization at bud emergence and in response to pheromones, but it is not understood how Gic2p interacts with the actin cytoskeleton. Here we show that Gic2p displayed multiple genetic interactions with Bni1p, Bud6p (Aip3p), and Spa2p, suggesting that Gic2p may regulate their function in vivo. In support of this idea, Gic2p cofractionated with Bud6p and Spa2p and interacted with Bud6p by coimmunoprecipitation and two-hybrid analysis. Importantly, localization of Bni1p and Bud6p to the incipient bud site was dependent on active Cdc42p and the Gic proteins but did not require an intact actin cytoskeleton. We identified a conserved domain in Gic2p which was necessary for its polarization function but dispensable for binding to Cdc42p-GTP and its localization to the site of polarization. Expression of a mutant Gic2p harboring a single-amino-acid substitution in this domain (Gic2p(W23A)) interfered with polarized growth in a dominant-negative manner and prevented recruitment of Bni1p and Bud6p to the incipient bud site. We propose that at bud emergence, Gic2p functions as an adaptor which may link activated Cdc42p to components involved in actin organization and polarized growth, including Bni1p, Spa2p, and Bud6p.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Ciclo Celular , Cromatografia em Gel , Sequência Conservada , Proteínas do Citoesqueleto , Citoesqueleto/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Genes Dominantes , Mutagênese Sítio-Dirigida , Plasmídeos , Testes de Precipitina , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Temperatura , Tiazóis/farmacologia , Tiazolidinas , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
3.
EMBO J ; 17(18): 5360-73, 1998 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-9736614

RESUMO

Cdc42p, a Rho-related GTP-binding protein, regulates cytoskeletal polarization and rearrangements in eukaryotic cells. In yeast, Gic1p and Gic2p are effectors of Cdc42p involved in actin polarization at bud emergence. Gic2p is expressed in a cell cycle-dependent manner and rapidly disappears shortly after bud emergence concomitant with the activation of the G1 cyclin-dependent kinase Cdc28p-Clnp. Here we have shown that the rapid disappearance of Gic2p results from ubiquitin-dependent proteolysis. Biochemical and genetic evidence demonstrates that degradation of Gic2p required the Skp1-cullin-F-box protein complex (SCF) components Cdc34p, Cdc53p, Skp1p and Grr1p, but not Cdc4p. Phosphorylation of several C-terminal sites of Gic2p served as part of the recognition signal for ubiquitination. In addition, binding of Gic2p to Cdc42p was a prerequisite for degradation, suggesting that specifically the active form of Gic2p is targeted for destruction. Finally, our data indicate that degradation of Gic2p may be part of a mechanism which restricts cytoskeletal polarization in the G1 phase of the cell cycle.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Ubiquitinas/metabolismo , Actinas , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/genética , Citoesqueleto , Proteínas F-Box , Fase G1 , Guanosina Trifosfato/metabolismo , Fosforilação , Proteínas Recombinantes de Fusão , Leveduras/citologia , Leveduras/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP
4.
Proc Natl Acad Sci U S A ; 92(19): 8871-5, 1995 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-7568034

RESUMO

Metazoan cyclin C was originally isolated by virtue of its ability to rescue Saccharomyces cerevisiae cells deficient in G1 cyclin function. This suggested that cyclin C might play a role in cell cycle control, but progress toward understanding the function of this cyclin has been hampered by the lack of information on a potential kinase partner. Here we report the identification of a human protein kinase, K35 [cyclin-dependent kinase 8 (CDK8)], that is likely to be a physiological partner of cyclin C. A specific interaction between K35 and cyclin C could be demonstrated after translation of CDKs and cyclins in vitro. Furthermore, cyclin C could be detected in K35 immunoprecipitates prepared from HeLa cells, indicating that the two proteins form a complex also in vivo. The K35-cyclin C complex is structurally related to SRB10-SRB11, a CDK-cyclin pair recently shown to be part of the RNA polymerase II holoenzyme of S. cerevisiae. Hence, we propose that human K35(CDK8)-cyclin C might be functionally associated with the mammalian transcription apparatus, perhaps involved in relaying growth-regulatory signals.


Assuntos
Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Sistema Livre de Células , Clonagem Molecular , Ciclina C , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/classificação , Quinases Ciclina-Dependentes/genética , DNA Complementar/genética , Humanos , Dados de Sequência Molecular , Mapeamento de Peptídeos , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transcrição Gênica
5.
Genes Dev ; 11(22): 2972-82, 1997 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-9367980

RESUMO

Cdc42p, a Rho-related GTP-binding protein, regulates cytoskeletal polarization and rearrangements in eukaryotic cells, but the effectors mediating this control remain unknown. Through the use of the complete yeast genomic sequence, we have identified two novel Cdc42p targets, Gic1p and Gic2p, which contain consensus Cdc42/Rac interactive-binding (CRIB) domains and bind specifically to Cdc42p-GTP. Gic1p and Gic2p colocalize with Cdc42p as cell polarity is established during the cell cycle and during mating in response to pheromones. Cells deleted for both GIC genes exhibit defects in actin and microtubule polarization similar to those observed in cdc42 mutants. Finally, the interaction of the Gic proteins and Cdc42p is essential, as mutations in the CRIB domain of Gic2p that eliminate Cdc42p binding disrupt Gic2p localization and function. Thus, Gic1p and Gic2p define a novel class of Cdc42p targets that are specifically required for cytoskeletal polarization in vivo.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Polaridade Celular , Proteínas Fúngicas/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Proteínas Ativadoras de GTPase , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Compartimento Celular , Ciclo Celular , Citoesqueleto/ultraestrutura , Genes Fúngicos , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP
6.
Mol Cell ; 6(5): 1155-67, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11106754

RESUMO

Rho-type GTPases control many cytoskeletal rearrangements, but their regulation remains poorly understood. Here, we show that in S. cerevisiae, activation of the CDK Cdc28-Cln2 at bud emergence triggers relocalization of Cdc24, the GEF for Cdc42, from the nucleus to the polarization site, where it is stably maintained by binding to the adaptor Bem1. Locally activated Cdc42 then polarizes the cytoskeleton in a manner dependent on its effectors Bni1 and the PAK-like kinase Cla4. In addition, Cla4 induces phosphorylation of Cdc24, leading to its dissociation from Bem1 at bud tips, thereby ending polarized bud growth in vivo. Our results thus suggest a dynamic temporal and spatial regulation of the Cdc42 module: Cdc28-Cln triggers actin polarization by activating Cdc42, which in turn restricts its own activation via a negative feedback loop acting on its GEF Cdc24.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Fatores de Troca do Nucleotídeo Guanina , Proteínas dos Microfilamentos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Divisão Celular , Núcleo Celular/metabolismo , Ciclinas/metabolismo , Estruturas Citoplasmáticas/química , Estruturas Citoplasmáticas/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Ativação Enzimática , Retroalimentação Fisiológica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fase G1 , Guanosina Trifosfato/metabolismo , Substâncias Macromoleculares , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia
7.
EMBO J ; 14(22): 5608-17, 1995 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8521818

RESUMO

It is proposed that the CDK7-cyclin H complex functions in cell cycle progression, basal transcription and DNA repair. Here we report that in vitro reconstitution of an active CDK7-cyclin H complex requires stoichiometric amounts of a novel 36 kDa assembly factor termed MAT1 (ménage à trois 1). Sequencing of MAT1 reveals a putative zinc binding motif (a C3HC4 RING finger) in the N-terminus; however, this domain is not required for ternary complex formation with CDK7-cyclin H. MAT1 is associated with nuclear CDK7-cyclin H at all stages of the cell cycle in vivo. Ternary complexes of CDK7, cyclin H and MAT1 display kinase activity towards substrates mimicking both the T-loop in CDKs and the C-terminal domain of RNA polymerase II, regardless of whether they are immunoprecipitated from HeLa cells or reconstituted in a reticulocyte lysate. MAT1 constitutes the first example of an assembly factor that appears to be essential for the formation of an active CDK-cyclin complex.


Assuntos
Quinases Ciclina-Dependentes , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Ciclo Celular , Ciclina H , DNA Complementar , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Relação Estrutura-Atividade , Quinase Ativadora de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA