Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nano Lett ; 22(12): 5009-5014, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35640240

RESUMO

Although colloidal nanoparticles hold promise for fabricating electronic components, the properties of nanoparticle-derived materials can be unpredictable. Materials made from metallic nanocrystals exhibit a variety of transport behavior ranging from insulators, with internanocrystal contacts acting as electron transport bottlenecks, to conventional metals, where phonon scattering limits electron mobility. The insulator-metal transition (IMT) in nanocrystal films is thought to be determined by contact conductance. Meanwhile, criteria are lacking to predict the characteristic transport behavior of metallic nanocrystal films beyond this threshold. Using a library of transparent conducting tin-doped indium oxide nanocrystal films with varied electron concentration, size, and contact area, we assess the IMT as it depends on contact conductance and show how contact conductance is also key to predicting the temperature-dependence of conductivity in metallic films. The results establish a phase diagram for electron transport behavior that can guide the creation of metallic conducting materials from nanocrystal building blocks.

2.
Small ; 18(43): e2106927, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35187803

RESUMO

Sodium layered oxides show great promise as affordable alternatives to lithium layered oxides, but their poor cycle life and air stability limit their practical potential. Micron-scale single crystals with greater packing density and lower surface area can overcome these challenges and improve performance compared to the traditional polycrystalline morphology. Herein, the authors present the synthesis of layered O3-type Na(Ni0.3 Fe0.4 Mn0.3 )O2 single-crystals with greatly improved cycle life and air stability. A molten-salt synthesis technique is adopted with excess sodium hydroxide to obtain platelet-like single crystals. Because the main mechanisms of both capacity fade and air degradation occur as a result of surface reactions at the opening of the sodium diffusion channels, particle morphology is found to be a critical metric for materials performance. More important than particle size or total surface area, the smaller proportion of exposed edge planes in the platelet morphology greatly reduces the amount of harmful surface reactions. Furthermore, the molten-salt method is found to eliminate the need for coprecipitated precursors and even form better morphology, starting from metal oxides instead of coprecipitated hydroxides.


Assuntos
Lítio , Sódio , Sódio/química , Hidróxido de Sódio , Eletrodos , Óxidos/química
3.
Nano Lett ; 20(11): 8384-8391, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33054227

RESUMO

Accurate measurements of the size-dependent lattice thermal conductivity (κl) of alloy nanostructures are challenging but help to address outstanding questions on the effects of atomic disorder and surface roughness on low-frequency vibrational modes in functional materials. Here, we report sensitive κl measurements of multiple segments of the same individual SiGe nanowires. In contrast to a previous report of ballistic thermal transport over several microns in SiGe nanowires, the obtained κl are nearly independent of the segment length from 2 to 10 µm and the temperature between 150 and 300 K. The results are in agreement with a theoretical calculation based on the virtual crystal approximation of the vibrational modes as phonons with mean free paths suppressed by purely diffuse surface scattering. The findings inform continuing theoretical efforts for understanding the roles of different types of vibrational modes in thermal transport in disordered thermoelectric and electronic materials.

4.
Chem Res Toxicol ; 31(6): 506-509, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29792697

RESUMO

Pigment-grade titanium dioxide (TiO2) of 200-300 nm particle diameter is the most widely used submicron-sized particle material. Inhaled and ingested TiO2 particles enter the bloodstream, are phagocytized by macrophages and neutrophils, are inflammatory, and activate the NLRP3 inflammasome. In this pilot study of 11 pancreatic specimens, 8 of the type 2 diabetic pancreas and 3 of the nondiabetic pancreas, we show that particles comprising 110 ± 70 nm average diameter TiO2 monocrystals abound in the type 2 diabetic pancreas, but not in the nondiabetic pancreas. In the type 2 diabetic pancreas, the count of the crystals is as high as 108-109 per gram.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Pâncreas/química , Titânio/análise , Humanos , Pâncreas/patologia , Tamanho da Partícula , Projetos Piloto , Titânio/efeitos adversos
5.
Faraday Discuss ; 210(0): 267-280, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989122

RESUMO

In this paper, we report the electrosynthesis and characterization of individual, shape-controlled Pt nanocrystals (NCs) electrodeposited on carbon nanoelectrodes (CNEs). Single Pt NCs were deposited onto the CNEs using an empirically developed square-wave potential program. Characterization by scanning electron microscopy indicates that the sizes of Pt NCs are remarkably reproducible (relative standard deviation = 6%). Electrochemically active surface areas, determined by Cu underpotential deposition and H adsorption/desorption analyses, are also reproducible. Selected area electron diffraction indicates that each Pt NC is comprised of just one single crystal (no grain boundaries). Although different square-wave potential programs lead to different types of crystals, the Pt NCs discussed here have a concave hexoctahedral geometry bound primarily by {13 6 2} surface facets. The results in this report represent a first step toward our ultimate goal of studying electrocatalysis at individual, shape-controlled, single-crystal nanoparticles.

6.
Nano Lett ; 15(8): 5039-45, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26134588

RESUMO

We report on the gigahertz radio frequency (RF) performance of chemical vapor deposited (CVD) monolayer MoS2 field-effect transistors (FETs). Initial DC characterizations of fabricated MoS2 FETs yielded current densities exceeding 200 µA/µm and maximum transconductance of 38 µS/µm. A contact resistance corrected low-field mobility of 55 cm(2)/(V s) was achieved. Radio frequency FETs were fabricated in the ground-signal-ground (GSG) layout, and standard de-embedding techniques were applied. Operating at the peak transconductance, we obtain short-circuit current-gain intrinsic cutoff frequency, fT, of 6.7 GHz and maximum intrinsic oscillation frequency, fmax, of 5.3 GHz for a device with a gate length of 250 nm. The MoS2 device afforded an extrinsic voltage gain Av of 6 dB at 100 MHz with voltage amplification until 3 GHz. With the as-measured frequency performance of CVD MoS2, we provide the first demonstration of a common-source (CS) amplifier with voltage gain of 14 dB and an active frequency mixer with conversion gain of -15 dB. Our results of gigahertz frequency performance as well as analog circuit operation show that large area CVD MoS2 may be suitable for industrial-scale electronic applications.

7.
Ultramicroscopy ; 239: 113562, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675735

RESUMO

Preservation of analyte integrity during focused ion beam (FIB) sample preparation is a significant challenge in the scanning transmission electron microscopy (STEM) characterization of plan-view samples with sensitive surface chemistries. This can preclude the characterization of atomic arrangements, nanoscale surface coverages, and distributions and morphologies of functional molecular materials composed of surface-immobilized metal nanoparticles, clusters or coordination complexes. This work demonstrates effective protection of Pt nanoparticle (NP) morphology through a plan-view FIB lift-out and thinning procedure by encapsulating the sample surface in an Al2O3 overlayer grown by atomic layer deposition (ALD). High-angle annular dark field (HAADF)-STEM analysis was used in concert with energy dispersive X-ray spectroscopy (EDS) to identify and image sub-10 nm features attributed to Pt and to evaluate the distribution of implanted Ga+ (derived from the FIB milling beam). ALD is a mild chemical vapor deposition (CVD) technique that has the capability to generate dense, pinhole-free films with tunable compositions and properties, making this ALD-FIB procedure applicable to many sample architectures for plan-view lamella preparation and STEM analysis.


Assuntos
Nanopartículas Metálicas , Microscopia Eletrônica de Transmissão e Varredura , Espectrometria por Raios X
8.
J Alzheimers Dis ; 77(2): 547-550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804151

RESUMO

Knowing that Alzheimer's disease (AD) nucleates in the entorhinal cortex (EC), samples of 12 EC specimens were probed for crystals by a protocol detecting fewer than 1/5000th of those present. Of the 61 crystals found, 31 were expected and 30 were novel. Twenty-one crystals of iron oxides and 10 atherosclerosis-associated calcium pyrophosphate dihydrate crystals were expected and found. The 30 unexpected crystals were NLRP3-inflammasome activating calcium oxalate dihydrate (12) and titanium dioxide (18). Their unusual distribution raises the possibility that some were of AD origination sites.


Assuntos
Doença de Alzheimer/patologia , Oxalato de Cálcio/análise , Córtex Entorrinal/química , Córtex Entorrinal/patologia , Titânio/análise , Idoso , Idoso de 80 Anos ou mais , Oxalato de Cálcio/toxicidade , Cristalização , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Titânio/toxicidade
9.
Nanoscale ; 10(47): 22520-22532, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30480291

RESUMO

A microwave assisted method was used to synthesize RhAu nanoparticles (NPs). Characterization, based upon transmission electron microscopy (TEM), energy dispersive spectroscopy, and powder X-ray diffraction, provided the evidence of monomodal alloy NPs with a mean size distribution between 3 and 5 nm, depending upon the composition. Extended X-ray adsorption fine-structure spectroscopy (EXAFS) also showed evidence of alloying, but the coordination numbers of Rh and Au indicated significant segregation between the metals. More problematic were the low coordination numbers for Rh; values of ca. 9 indicate NPs smaller than 2 nm, significantly smaller than those observed with TEM. Additionally, no single-particle structural models were able to reproduce the experimental EXAFS data. Resolution of this discrepancy was achieved with high resolution aberration corrected scanning TEM imaging which showed the presence of ultra-small (<2 nm) pure Rh clusters and larger (∼3-5 nm) segregated particles with Au-rich cores and Rh-decorated shells. A heterogeneous model with a mixture of ultrasmall pure Rh clusters and larger segregated Rh/Au NPs was able to explain the experimental measurements of the NPs over the range of compositions measured. The combination of density functional theory, EXAFS, and TEM allowed us to quantify the heterogeneity in the RhAu NPs. It was only through this combination of theoretical and experimental techniques that resulted in a bimodal distribution of particle sizes that was able to explain all of the experimental characterization data.

10.
Artigo em Inglês | MEDLINE | ID: mdl-28713648

RESUMO

The authors study the composition and abruptness of the interfacial layers that form during deposition and patterning of a ferromagnet, Fe on a topological insulator (TI), Bi2Se3, Bi2Te3, and SiOx/Bi2Te3. Such structures are potentially useful for spintronics. Cross-sectional transmission electron microscopy, including interfacial elemental mapping, confirms that Fe reacts with Bi2Se3 near room temperature, forming an abrupt 5 nm thick FeSe0.92 single crystalline binary phase, predominantly (001) oriented, with lattice fringe spacing of 0.55 nm. In contrast, Fe/Bi2Te3 forms a polycrystalline Fe/TI interfacial alloy that can be prevented by the addition of an evaporated SiOx separating Fe from the TI.

11.
ACS Nano ; 10(3): 3186-97, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26881920

RESUMO

One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain.

12.
Nat Commun ; 5: 3949, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24862287

RESUMO

Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic activity of LT-LiCoO2 is higher than that of both spinel cobalt oxide and layered lithium cobalt oxide synthesized at 800 °C (designated as HT-LiCoO2) for the oxygen evolution reaction. Although LT-LiCoO2 exhibits poor activity for the oxygen reduction reaction, the chemically delithiated LT-Li1-xCoO2 samples exhibit a combination of high oxygen reduction reaction and oxygen evolution reaction activities, making the spinel-type LT-Li0,5CoO2 a potential bifunctional electrocatalyst for rechargeable metal-air batteries. The high activities of these delithiated compositions are attributed to the Co4O4 cubane subunits and a pinning of the Co(3+/4+):3d energy with the top of the O(2-):2p band.

13.
Environ Sci Technol ; 43(16): 6314-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19746731

RESUMO

Storage of CO2 through mineral sequestration using olivine has been shown to produce environmentally benign carbonates. However, due to the formation of a rate-limiting reaction product layer, the rate of reaction is insufficient for large-scale applications. We report the results of altering the reactant solution composition and the resultant reaction mechanism to enhance the reaction rate. The products were analyzed for total carbon content with thermal decomposition analysis, product phase compositions with Debye-Scherrer X-ray powder diffraction (XRD), surface morphology with scanning electron microscopy (SEM), and composition with energy dispersive X-ray spectroscopy (EDXS). Carbon analysis showed that an increase in bicarbonate ion activity increased the olivine to carbonate conversion rate. The fastest conversion rate, 63% conversion in one hour, occurred in a solution of 5.5 M KHCO3. Additionally, SEM confirmed that when the bicarbonate ion activity was increased, magnesium carbonate product particles significantly increased in both number density and size and the rate passivating-reaction layer exfoliation was augmented.


Assuntos
Dióxido de Carbono/isolamento & purificação , Minerais/química , Bicarbonatos/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Compostos de Potássio/química , Rubídio/química , Bicarbonato de Sódio/química , Soluções , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA