Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Transgenic Res ; 33(3): 131-147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739244

RESUMO

Δ1-pyrroline-5-carboxylate synthetase (P5CS) is one of the key regulatory enzymes involved in the proline biosynthetic pathway. Proline acts as an osmoprotectant, molecular chaperone, antioxidant, and regulator of redox homeostasis. The accumulation of proline during stress is believed to confer tolerance in plants. In this study, we cloned the complete CDS of the P5CS from pearl millet (Pennisetum glaucum (L.) R.Br. and transformed into tobacco. Three transgenic tobacco plants with single-copy insertion were analyzed for drought and heat stress tolerance. No difference was observed between transgenic and wild-type (WT) plants when both were grown in normal conditions. However, under heat and drought, transgenic plants have been found to have higher chlorophyll, relative water, and proline content, and lower malondialdehyde (MDA) levels than WT plants. The photosynthetic parameters (stomatal conductance, intracellular CO2 concentration, and transpiration rate) were also observed to be high in transgenic plants under abiotic stress conditions. qRT-PCR analysis revealed that the expression of the transgene in drought and heat conditions was 2-10 and 2-7.5 fold higher than in normal conditions, respectively. Surprisingly, only P5CS was increased under heat stress conditions, indicating the possibility of feedback inhibition. Our results demonstrate the positive role of PgP5CS in enhancing abiotic stress tolerance in tobacco, suggesting its possible use to increase abiotic stress-tolerance in crops for sustained yield under adverse climatic conditions.


Assuntos
Secas , Nicotiana , Plantas Geneticamente Modificadas , Prolina , Estresse Fisiológico , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/metabolismo , Estresse Fisiológico/genética , Prolina/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo
2.
Physiol Mol Biol Plants ; 30(3): 497-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633271

RESUMO

Ziziphus nummularia an elite heat-stress tolerant shrub, grows in arid regions of desert. However, its molecular mechanism responsible for heat stress tolerance is unexplored. Therefore, we analysed whole transcriptome of Jaisalmer (heat tolerant) and Godhra (heat sensitive) genotypes of Z. nummularia to understand its molecular mechanism responsible for heat stress tolerance. De novo assembly of 16,22,25,052 clean reads yielded 276,029 transcripts. A total of 208,506 unigenes were identified which contains 4290 and 1043 differentially expressed genes (DEG) in TGO (treated Godhra at 42 °C) vs. CGO (control Godhra) and TJR (treated Jaisalmer at 42 °C) vs. CJR (control Jaisalmer), respectively. A total of 987 (67 highly enriched) and 754 (34 highly enriched) pathways were obsorved in CGO vs. TGO and CJR vs. TJR, respectively. Antioxidant pathways and TFs like Homeobox, HBP, ARR, PHD, GRAS, CPP, and E2FA were uniquely observed in Godhra genotype and SET domains were uniquely observed in Jaisalmer genotype. Further transposable elements were highly up-regulated in Godhra genotype but no activation in Jaisalmer genotype. A total of 43,093 and 39,278 simple sequence repeats were identified in the Godhra and Jaisalmer genotypes, respectively. A total of 10 DEGs linked to heat stress were validated in both genotypes for their expression under different heat stresses using quantitative real-time PCR. Comparing expression patterns of the selected DEGs identified ClpB1 as a potential candidate gene for heat tolerance in Z. nummularia. Here we present first characterized transcriptome of Z. nummularia in response to heat stress for the identification and characterization of heat stress-responsive genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01431-y.

3.
Cereb Cortex ; 31(4): 1998-2012, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33230530

RESUMO

Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


Assuntos
DNA Metiltransferase 3A/metabolismo , Locomoção/fisiologia , Córtex Pré-Frontal/enzimologia , Estresse Psicológico/enzimologia , Estresse Psicológico/psicologia , Sinapses/enzimologia , Animais , Doença Crônica , DNA Metiltransferase 3A/antagonistas & inibidores , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Ftalimidas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Triptofano/análogos & derivados , Triptofano/farmacologia
4.
BMC Genomics ; 22(1): 685, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548034

RESUMO

BACKGROUND: Carp fish, rohu (Labeo rohita Ham.) is important freshwater aquaculture species of South-East Asia having seasonal reproductive rhythm. There is no holistic study at transcriptome level revealing key candidate genes involved in such circannual rhythm regulated by biological clock genes (BCGs). Seasonality manifestation has two contrasting phases of reproduction, i.e., post-spawning resting and initiation of gonadal activity appropriate for revealing the associated candidate genes. It can be deciphered by RNA sequencing of tissues involved in BPGL (Brain-Pituitary-Gonad-Liver) axis controlling seasonality. How far such BCGs of this fish are evolutionarily conserved across different phyla is unknown. Such study can be of further use to enhance fish productivity as seasonality restricts seed production beyond monsoon season. RESULT: A total of ~ 150 Gb of transcriptomic data of four tissues viz., BPGL were generated using Illumina TruSeq. De-novo assembled BPGL tissues revealed 75,554 differentially expressed transcripts, 115,534 SSRs, 65,584 SNPs, 514 pathways, 5379 transcription factors, 187 mature miRNA which regulates candidate genes represented by 1576 differentially expressed transcripts are available in the form of web-genomic resources. Findings were validated by qPCR. This is the first report in carp fish having 32 BCGs, found widely conserved in fish, amphibian, reptile, birds, prototheria, marsupials and placental mammals. This is due to universal mechanism of rhythmicity in response to environment and earth rotation having adaptive and reproductive significance. CONCLUSION: This study elucidates evolutionary conserved mechanism of photo-periodism sensing, neuroendocrine secretion, metabolism and yolk synthesis in liver, gonadal maturation, muscular growth with sensory and auditory perception in this fish. Study reveals fish as a good model for research on biological clock besides its relevance in reproductive efficiency enhancement.


Assuntos
Carpas , Cyprinidae , Animais , Cyprinidae/genética , Feminino , Placenta , Gravidez , Reprodução/genética , Análise de Sequência de RNA
5.
Genomics ; 112(1): 99-107, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356969

RESUMO

Snow Mountain Garlic grows in the high altitudes of the Himalayas under low temperature conditions. It contains various bioactive compounds whose metabolic pathways have not been worked out at genomic level. The present work is the first report on the transcriptome sequencing of this plant. >43 million paired-end reads (301 × 2) were generated using Illumina Miseq sequencing technology. Assembling of the sequencing data resulted in 326,785 transcripts. Differentially expressed genes between the clove and leaf tissues were identified and characterized. Besides, greater emphasis was laid on the genes, which were highly expressed in clove since the latter is assumed to contain high content of the bioactive compounds. Further analysis led to the identification of the genes plausibly involved in the organosulfur metabolism. We also identified several simple sequence repeats and single nucleotide polymorphism. These constitute valuable genetic resource for research and further genetic improvement of the plant.


Assuntos
Alho/genética , Compostos de Enxofre/metabolismo , Transcriptoma , Alho/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Redes e Vias Metabólicas/genética , Repetições de Microssatélites , Folhas de Planta/genética , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Domínios Proteicos
6.
Genomics ; 112(1): 252-262, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822468

RESUMO

A massive bovine, Bos frontalis, also known as Mithun or Gayal, found at higher altitude is very promising meat and milk animal. For candidate gene and marker discovery, RNA-seq data was generated from longissimus dorsi muscle tissues with Illumina-HiSeq. Such markers can be used in future for genetic gain of traits like feed conversion efficiency (FCE) and average daily gain (ADG). Analysis revealed 297differentially expressed genes (DEGs) having 173 up and 124 down-regulated unigenes. Extensive conservation was found in genic region while comparing with Bos taurus. Analysis revealed 57 pathways having 112 enzymes, 72 transcriptional factors and cofactors, 212 miRNAs regulating 71 DEGs, 25,855 SSRs, mithun-specific 104,822 variants and 7288 indels, gene regulatory network (GRN) having 24 hub-genes and transcriptional factors regulating cell proliferation, immune tolerance and myogenesis. This is first report of muscle transcriptome depicting candidate genes with GRN controlling FCE and ADG. Reported putative molecular markers, candidate genes and hub proteins can be valuable genomic resources for association studies in genetic improvement programme.


Assuntos
Bovinos/genética , Redes Reguladoras de Genes , Músculos/metabolismo , Transcriptoma , Animais , Ontologia Genética , Mutação INDEL , MicroRNAs/metabolismo , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
7.
Genomics ; 112(2): 2041-2051, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31770586

RESUMO

Small cardamom (Elettaria cardamomum), grown in limited coastal tropical countries is one of the costliest and widely exported agri-produce having global turnover of >10 billion USD. Mosaic/marble disease is one of the major impediments that requires understanding of disease at molecular level. Neither whole genome sequence nor any genomic resources are available, thus RNA seq approach can be a rapid and economical alternative. De novo transcriptome assembly was done with Illumina Hiseq data. A total of 5317 DEGs, 2267 TFs, 114 pathways and 175,952 genic region putative markers were obtained. Gene regulatory network analysis deciphered molecular events involved in marble disease. This is the first transcriptomic report revealing disease mechanism mediated by perturbation in auxin homeostasis and ethylene signalling leading to senescence. The web-genomic resource (SCMVTDb) catalogues putative molecular markers, candidate genes and transcript information. SCMVTDb can be used in germplasm improvement against mosaic disease in endeavour of small cardamom productivity. Availability of genomic resource, SCMVTDb: http://webtom.cabgrid.res.in/scmvtdb/.


Assuntos
Elettaria/genética , Genoma de Planta , Interações Hospedeiro-Patógeno , Transcriptoma , Elettaria/virologia , Regulação da Expressão Gênica de Plantas , Mutação INDEL , Repetições de Microssatélites , Vírus do Mosaico/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
BMC Plant Biol ; 19(1): 26, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646861

RESUMO

BACKGROUND: Soybean (Glycine max L. Merril) crop is major source of edible oil and protein for human and animals besides its various industrial uses including biofuels. Phytoplasma induced floral bud distortion syndrome (FBD), also known as witches' broom syndrome (WBS) has been one of the major biotic stresses adversely affecting its productivity. Transcriptomic approach can be used for knowledge discovery of this disease manifestation by morpho-physiological key pathways. RESULTS: We report transcriptomic study using Illumina HiSeq NGS data of FBD in soybean, revealing 17,454 differentially expressed genes, 5561 transcription factors, 139 pathways and 176,029 genic region putative markers single sequence repeats, single nucleotide polymorphism and Insertion Deletion. Roles of PmbA, Zn-dependent protease, SAP family and auxin responsive system are described revealing mechanism of flower bud distortion having abnormalities in pollen, stigma development. Validation of 10 randomly selected genes was done by qPCR. Our findings describe the basic mechanism of FBD disease, right from sensing of phytoplasma infection by host plant triggering molecular signalling leading to mobilization of carbohydrate and protein, phyllody, abnormal pollen development, improved colonization of insect in host plants to spread the disease. Study reveals how phytoplasma hijacks metabolic machinery of soybean manifesting FBD. CONCLUSIONS: This is the first report of transcriptomic signature of FBD or WBS disease of soybean revealing morphological and metabolic changes which attracts insect for spread of disease. All the genic region putative markers may be used as genomic resource for variety improvement and new agro-chemical development for disease control to enhance soybean productivity.


Assuntos
Glycine max/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Transcriptoma/genética
9.
Physiol Mol Biol Plants ; 23(4): 767-777, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29158627

RESUMO

Vigna mungo (Urdbean) is cultivated in the tropical and sub-tropical continental region of Asia. It is not only important source of dietary protein and nutritional elements, but also of immense value to human health due to medicinal properties. Yellow mosaic disease caused by Mungbean Yellow Mosaic India Virus is known to incur huge loss to crop, adversely affecting crop yield. Contrasting genotypes are ideal source for knowledge discovery of plant defence mechanism and associated candidate genes for varietal improvement. Whole genome sequence of this crop is yet to be completed. Moreover, genomic resources are also not freely accessible, thus available transcriptome data can be of immense use. V. mungo Transcriptome database, accessible at http://webtom.cabgrid.res.in/vmtdb/ has been developed using available data of two contrasting varieties viz., cv. VM84 (resistant) and cv. T9 (susceptible). De novo assembly was carried out using Trinity and CAP3. Out of total 240,945 unigenes, 165,894 (68.8%) showed similarity with known genes against NR database, and remaining 31.2% were found to be novel. We found 22,101 differentially expressed genes in all datasets, 44,335 putative genic SSR markers, 4105 SNPs and Indels, 64,964 transcriptional factor, 546 mature miRNA target prediction in 703 differentially expressed unigenes and 137 pathways. MAPK, salicylic acid-binding protein 2-like, pathogenesis-related protein and NBS-LRR domain were found which may play an important role in defence against pathogens. This is the first web genomic resource of V. mungo for future genome annotation as well as ready to use markers for future variety improvement program.

10.
Front Genet ; 13: 809741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480326

RESUMO

Water buffalo (Bubalus bubalis), belonging to the Bovidae family, is an economically important animal as it is the major source of milk, meat, and drought in numerous countries. It is mainly distributed in tropical and subtropical regions with a global population of approximately 202 million. The advent of low cost and rapid sequencing technologies has opened a new vista for global buffalo researchers. In this study, we utilized the genomic data of five commercially important buffalo breeds, distributed globally, namely, Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and Murrah. Since there is no whole-genome sequence analysis of these five distinct buffalo breeds, which represent a highly diverse ecosystem, we made an attempt for the same. We report the first comprehensive, holistic, and user-friendly web genomic resource of buffalo (BuffGR) accessible at http://backlin.cabgrid.res.in/buffgr/, that catalogues 6028881 SNPs and 613403 InDels extracted from a set of 31 buffalo tissues. We found a total of 7727122 SNPs and 634124 InDels distributed in four breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and Egyptian) with reference to the Mediterranean breed. It also houses 4504691 SSR markers from all the breeds along with 1458 unique circRNAs, 37712 lncRNAs, and 938 miRNAs. This comprehensive web resource can be widely used by buffalo researchers across the globe for use of markers in marker trait association, genetic diversity among the different breeds of buffalo, use of ncRNAs as regulatory molecules, post-transcriptional regulations, and role in various diseases/stresses. These SNPs and InDelscan also be used as biomarkers to address adulteration and traceability. This resource can also be useful in buffalo improvement programs and disease/breed management.

11.
J Fungi (Basel) ; 7(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921243

RESUMO

Identification and diversity analysis of fungi is greatly challenging. Though internal transcribed spacer (ITS), region-based DNA fingerprinting works as a "gold standard" for most of the fungal species group, it cannot differentiate between all the groups and cryptic species. Therefore, it is of paramount importance to find an alternative approach for strain differentiation. Availability of whole genome sequence data of nearly 2000 fungal species are a promising solution to such requirement. We present whole genome sequence-based world's largest microsatellite database, FungSatDB having >19M loci obtained from >1900 fungal species/strains using >4000 assemblies across globe. Genotyping efficacy of FungSatDB has been evaluated by both in-silico and in-vitro PCR. By in silico PCR, 66 strains of 8 countries representing four continents were successfully differentiated. Genotyping efficacy was also evaluated by in vitro PCR in four fungal species. This approach overcomes limitation of ITS in species, strain signature, and diversity analysis. It can accelerate fungal genomic research endeavors in agriculture, industrial, and environmental management.

12.
J Comput Biol ; 27(5): 738-754, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31464514

RESUMO

Heat shock protein 70 (Hsp70), a 70-kDa protein, also known as a molecular chaperone, is highly conserved. It plays a major role in cellular functions such as protein folding, regulation of protein degradation, translocation of proteins across membranes, receptor signaling, and protein assembly or disassembly. Vigna radiata is an important legume crop with available whole-genome sequence, but no such study on the HSP70 family is reported. A total of 32 V. radiate HSP70s (Vr-HSP70s) were identified and described. They are phylogenetically clustered into four subgroups. Vr-HSP70s show variations in intron/exon organization. This indicates that introns may play an essential role in gene regulating. The coexpression analysis of Vr-HSP70s revealed that these genes were involved in both abiotic and biotic stresses. Three cytoplasmic hub genes namely Vr-HSP70-C-14, Vr-HSP70-C-29, and Vr-HSP70-C-30 were found common in both stresses. Our findings provide directions for future studies to dissect functional analysis of Vr-HSP70s in response to abiotic and biotic stresses.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP70/genética , Estresse Fisiológico/genética , Vigna/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Vigna/crescimento & desenvolvimento
13.
Sci Rep ; 9(1): 13917, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558740

RESUMO

Drought is one of the major impediments in wheat productivity. Traditional breeding and marker assisted QTL introgression had limited success. Available wheat genomic and RNA-seq data can decipher novel drought tolerance mechanisms with putative candidate gene and marker discovery. Drought is first sensed by root tissue but limited information is available about how roots respond to drought stress. In this view, two contrasting genotypes, namely, NI5439 41 (drought tolerant) and WL711 (drought susceptible) were used to generate ~78.2 GB data for the responses of wheat roots to drought. A total of 45139 DEGs, 13820 TF, 288 miRNAs, 640 pathways and 435829 putative markers were obtained. Study reveals use of such data in QTL to QTN refinement by analysis on two model drought-responsive QTLs on chromosome 3B in wheat roots possessing 18 differentially regulated genes with 190 sequence variants (173 SNPs and 17 InDels). Gene regulatory networks showed 69 hub-genes integrating ABA dependent and independent pathways controlling sensing of drought, root growth, uptake regulation, purine metabolism, thiamine metabolism and antibiotics pathways, stomatal closure and senescence. Eleven SSR markers were validated in a panel of 18 diverse wheat varieties. For effective future use of findings, web genomic resources were developed. We report RNA-Seq approach on wheat roots describing the drought response mechanisms under field drought conditions along with genomic resources, warranted in endeavour of wheat productivity.


Assuntos
Secas , Locos de Características Quantitativas , Estresse Fisiológico , Transcriptoma , Triticum/genética , Estudo de Associação Genômica Ampla/normas , Mutação INDEL , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , RNA-Seq , Triticum/metabolismo
14.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147679

RESUMO

Genus Vigna represented by more than 100 species is a source of nutritious edible seeds and sprouts that are rich sources of protein and dietary supplements. It is further valuable because of therapeutic attributes due to its antioxidant and anti-diabetic properties. A highly diverse and an extremely ecological niche of different species can be valuable genomic resources for productivity enhancement. It is one of the most underutilized crops for food security and animal feeds. In spite of huge species diversity, only three species of Vigna have been sequenced; thus, there is a need for molecular markers for the remaining species. Computational approach of microsatellite marker discovery along with evaluation of polymorphism utilizing available genomic data of different genotypes can be a quick and an economical approach for genomic resource development. Cross-species transferability by e-PCR over available genomes can further prioritize the potential SSR markers, which could be used for genetic diversity and population differentiation of the remaining species saving cost and time. We present VigSatDB-the world's first comprehensive microsatellite database of genus Vigna, containing >875 K putative microsatellite markers with 772 354 simple and 103 865 compound markers mined from six genome assemblies of three Vigna species, namely, Vigna radiata (Mung bean), Vigna angularis (Adzuki bean) and Vigna unguiculata (Cowpea). It also contains 1976 validated published markers. Markers can be selected on the basis of chromosomes/location specificity, and primers can be generated using Primer3core tool integrated at backend. Efficacy of VigSatDB for microsatellite loci genotyping has been evaluated by 15 markers over a panel of 10 diverse genotype of V. radiata. Our web genomic resources can be used in diversity analysis, population and varietal differentiation, discovery of quantitative trait loci/genes, marker-assisted varietal improvement in endeavor of Vigna crop productivity and management.


Assuntos
DNA de Plantas/genética , Bases de Dados de Ácidos Nucleicos , Repetições de Microssatélites , Vigna/genética , Especificidade da Espécie , Vigna/classificação
15.
Sci Rep ; 8(1): 3382, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467369

RESUMO

Pearl millet, (Pennisetum glaucum L.), an efficient (C4) crop of arid/semi-arid regions is known for hardiness. Crop is valuable for bio-fortification combating malnutrition and diabetes, higher caloric value and wider climatic resilience. Limited studies are done in pot-based experiments for drought response at gene-expression level, but field-based experiment mimicking drought by withdrawal of irrigation is still warranted. We report de novo assembly-based transcriptomic signature of drought response induced by irrigation withdrawal in pearl millet. We found 19983 differentially expressed genes, 7595 transcription factors, gene regulatory network having 45 hub genes controlling drought response. We report 34652 putative markers (4192 simple sequence repeats, 12111 SNPs and 6249 InDels). Study reveals role of purine and tryptophan metabolism in ABA accumulation mediating abiotic response in which MAPK acts as major intracellular signal sensing drought. Results were validated by qPCR of 13 randomly selected genes. We report the first web-based genomic resource ( http://webtom.cabgrid.res.in/pmdtdb/ ) which can be used for candidate genes-based SNP discovery programs and trait-based association studies. Looking at climatic change, nutritional and pharmaceutical importance of this crop, present investigation has immense value in understanding drought response in field condition. This is important in germplasm management and improvement in endeavour of pearl millet productivity.


Assuntos
Genoma de Planta/genética , Pennisetum/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética
16.
Sci Rep ; 8(1): 7652, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752471

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

17.
BMC Res Notes ; 7: 713, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25304397

RESUMO

BACKGROUND: Heat stress leads to accelerated production of reactive oxygen species (ROS) which causes a huge amount of oxidative damage to the cellular components of plants. A large number of heat stress related genes as HSPs, catalases, peroxidases are overexpressed at the time of stress. A potent stress responsive gene peroxisomal ascorbate peroxidase (TapAPX) obtained from heat stress (42 °C) responsive subtractive cDNA library from a thermo tolerant wheat cv. Raj3765 at anthesis stage was cloned, characterized and its role was validated under heat stress by proteomics and in-silico studies. In the present study we report the characterization at molecular and in-silico level of peroxisomal TapAPX gene isolated from heat tolerant wheat cultivar of India. RESULTS: qPCR studies of TapAPX gene displayed up to 203 fold level of expression at 42 °C heat stress exposure. A full length cDNA of 876 bp obtained by RACE deduced a protein of 292 amino acid residues which gives a complete 3D structure of pAPX by homology modeling. TapAPX cDNA was cloned in expression vector pET28 (a+) and the recombinant protein over-expressed in E. coli BL21 showed highest homology with APX protein as deduced by peptide mass fingerprinting. CONCLUSIONS: TapAPX gene from wheat cv Raj3765 has a distinct role in conferring thermo tolerance to the plants and thus can be used in crop improvement programmes for development of crops tolerant to high temperature.


Assuntos
Ascorbato Peroxidases/genética , Clonagem Molecular , Resposta ao Choque Térmico/genética , Temperatura Alta , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Triticum/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Ascorbato Peroxidases/química , Ascorbato Peroxidases/metabolismo , Clonagem Molecular/métodos , Regulação da Expressão Gênica de Plantas , Peroxidação de Lipídeos , Modelos Moleculares , Dados de Sequência Molecular , Estresse Oxidativo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Proteômica/métodos , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Triticum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA