Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11725, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777839

RESUMO

Live music is often linked to elaborate light shows, particularly at large outdoor music festivals. However, artificial light at night is one form of environmental pollution, light pollution, and because outdoor festivals emit a substantial amount of artificial light into the environment, they are a potential source of light pollution. So far, no studies that quantified the impact of such festivals on urban light pollution and skyglow exist. Here, the light pollution produced by a major rock festival (Lollapalooza Berlin 2016 with 70,000 visitors per day in an urban park) was investigated with ground-based radiometry and night-time light data. A small night-sky radiometer installed near the main stages and a calibrated digital camera from a nearby observation spot inside of the park were used to quantify changes in night sky brightness and direct light emissions within the park. The impact of the music festival on the urban skyglow was indeed measurable. Zenith luminance increased locally by up to a factor of 8 and illuminance increased by about 50% at the observation spot within the park. The radiance detected by night-time satellite was also increased during the festival. This is the first time, that light pollution from such a major rock music event was quantified.

2.
Sci Total Environ ; 920: 170513, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360314

RESUMO

This study examines the impact of Artificial Light at Night (ALAN) on two coral species, Acropora eurystoma and Pocillopora damicornis, in the Gulf of Aqaba/Eilat Red Sea, assessing their natural isotopic responses to highlight changes in energy and nutrient sourcing due to sensory light pollution. Our findings indicate significant disturbances in photosynthetic processes in Acropora eurystoma, as evidenced by shifts in δ13C values under ALAN, pointing to alterations in carbon distribution or utilization. In Pocillopora damicornis, similar trends were observed, with changes in δ13C and δ15N values suggesting a disruption in its nitrogen cycle and feeding strategies. The study also uncovers species-specific variations in heterotrophic feeding, a crucial factor in coral resilience under environmental stress, contributing to the corals' fixed carbon budget. Light measurements across the Gulf demonstrated a gradient of light pollution which possess the potential of affecting marine biology in the region. ALAN was found to disrupt natural diurnal tentacle behaviors in both coral species, crucial for prey capture and nutrient acquisition, thereby impacting their isotopic composition and health. Echoing previous research, our study underscores the need to consider each species' ecological and physiological contexts when assessing the impacts of anthropogenic changes. The findings offer important insights into the complexities of marine ecosystems under environmental stress and highlight the urgency of developing effective mitigation strategies.


Assuntos
Antozoários , Animais , Nitrogênio , Ecossistema , Isótopos de Carbono , Poluição Luminosa , Carbono , Recifes de Corais
3.
Commun Biol ; 7(1): 671, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822081

RESUMO

The attraction of insects to artificial light is a global environmental problem with far-reaching implications for ecosystems. Since light pollution is rarely integrated into conservation approaches, effective mitigation strategies towards environmentally friendly lighting that drastically reduce insect attraction are urgently needed. Here, we tested novel luminaires in two experiments (i) at a controlled experimental field site and (ii) on streets within three municipalities. The luminaires are individually tailored to only emit light onto the target area and to reduce spill light. In addition, a customized shielding renders the light source nearly invisible beyond the lit area. We show that these novel luminaires significantly reduce the attraction effect on flying insects compared to different conventional luminaires with the same illuminance on the ground. This underlines the huge potential of spatially optimized lighting to help to bend the curve of global insect decline without compromising human safety aspects. A customized light distribution should therefore be part of sustainable future lighting concepts, most relevant in the vicinity of protected areas.


Assuntos
Iluminação , Animais , Insetos/fisiologia , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA