Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(7): 469-482, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525531

RESUMO

Single-cell technologies such as flow cytometry and single-cell RNA sequencing have allowed for comprehensive characterization of the kidney cellulome. However, there is a disparity in the various protocols for preparing kidney single-cell suspensions. We aimed to address this limitation by characterizing kidney cellular heterogeneity using three previously published single-cell preparation protocols. Single-cell suspensions were prepared from male and female C57BL/6 kidneys using the following kidney tissue dissociation protocols: a scRNAseq protocol (P1), a multi-tissue digestion kit from Miltenyi Biotec (P2), and a protocol established in our laboratory (P3). Following dissociation, flow cytometry was used to identify known major cell types including leukocytes (myeloid and lymphoid), vascular cells (smooth muscle and endothelial), nephron epithelial cells (intercalating, principal, proximal, and distal tubule cells), podocytes, and fibroblasts. Of the protocols tested, P2 yielded significantly less leukocytes and type B intercalating cells compared with the other techniques. P1 and P3 produced similar yields for most cell types; however, endothelial and myeloid-derived cells were significantly enriched using P1. Significant sex differences were detected in only two cell types: granulocytes (increased in males) and smooth muscle cells (increased in females). Future single-cell studies that aim to enrich specific kidney cell types may benefit from this comparative analysis.NEW & NOTEWORTHY This study is the first to evaluate published single-cell suspension preparation protocols and their ability to produce high-quality cellular yields from the mouse kidney. Three single-cell digestion protocols were compared and each produced significant differences in kidney cellular heterogeneity. These findings highlight the importance of the digestion protocol when using single-cell technologies. This study may help future single-cell science research by guiding researchers to choose protocols that enrich certain cell types of interest.


Assuntos
Rim , Camundongos Endogâmicos C57BL , Análise de Célula Única , Animais , Análise de Célula Única/métodos , Feminino , Masculino , Camundongos , Rim/metabolismo , Rim/citologia , Citometria de Fluxo/métodos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia
2.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085666

RESUMO

The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.


Assuntos
Anexina A1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Aorta/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Substâncias Protetoras/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Formil Peptídeo/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Estreptozocina , Vasodilatadores/farmacologia
3.
Microcirculation ; 26(2): e12464, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29876993

RESUMO

Early maternal vascular adaptations to pregnancy are predominantly driven by changes in vascular tone, reactivity, and remodeling. Failure of the maternal systemic vasculature to adapt sufficiently can lead to serious complications of pregnancy. The hormone relaxin is widely recognized for its contribution to the essential renal and systemic hemodynamic adaptations in early pregnancy through direct actions on the maternal vasculature. Studies in relaxin gene knockout mice revealed that endogenous relaxin is not only a "pregnancy hormone" but has pleiotropic actions in various tissues in males and non-pregnant females. There is strong interest in relaxin's actions in the vasculature and its utility in the treatment of vascular diseases. Relaxin treatment in rodents for 2-5 days or acute intravenous injection enhances endothelium-dependent relaxation and decreases myogenic tone in resistance arteries. These vascular actions are prolonged, even in the absence of circulating relaxin, and are underpinned by the production of endothelium-derived relaxing factors including nitric oxide, endothelium-derived hyperpolarization, and prostacyclin. Relaxin is also capable of remodeling the vascular wall in a variety of blood vessels in disease conditions. Lessons learned in pregnancy research have aided studies investigating the potential therapeutic potential of relaxin in cardiovascular disease.


Assuntos
Gravidez , Relaxina/fisiologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Feminino , Hemodinâmica/efeitos dos fármacos , Humanos , Masculino , Relaxina/deficiência , Relaxina/uso terapêutico , Vasodilatação/efeitos dos fármacos
4.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R753-R760, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412692

RESUMO

The peptide hormone relaxin has numerous roles both within and independent of pregnancy and is often thought of as a "pleiotropic hormone." Relaxin targets several tissues throughout the body, and has many functions associated with extracellular matrix remodeling and the vasculature. This review considers the potential therapeutic applications of relaxin in cervical ripening, in vitro fertilization, preeclampsia, acute heart failure, ischemia-reperfusion, and cirrhosis. We first outline the animal models used in preclinical studies to progress relaxin into clinical trials and then discuss the findings from these studies. In many cases, the positive outcomes from preclinical animal studies were not replicated in human clinical trials. Therefore, the focus of this review is to evaluate the various animal models used to develop relaxin as a potential therapeutic and consider the limitations that must be addressed in future studies. These include the use of human relaxin in animals, duration of relaxin treatment, and the appropriateness of the clinical conditions being considered for relaxin therapy.


Assuntos
Relaxina/farmacologia , Relaxina/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hepatopatias/tratamento farmacológico , Gravidez , Relaxina/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
5.
Am J Physiol Regul Integr Comp Physiol ; 314(4): R499-R508, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212809

RESUMO

Preeclampsia affects up to 8% of pregnancies worldwide and is a leading cause of both maternal and fetal morbidity and mortality. Our current understanding of the cause(s) of preeclampsia is far from complete, and the lack of a single reliable animal model that recapitulates all aspects of the disease further confounds our understanding. This is partially due to the heterogeneous nature of the disease, coupled with our evolving understanding of its etiology. Nevertheless, animal models are still highly relevant and useful tools that help us better understand the pathophysiology of specific aspects of preeclampsia. This review summarizes the various types and characteristics of animal models used to study preeclampsia, highlighting particular features of these models relevant to clinical translation. This review points out the strengths and limitations of these models to illustrate the importance of using the appropriate model depending on the research question.


Assuntos
Pressão Sanguínea , Pré-Eclâmpsia/fisiopatologia , Pesquisa Translacional Biomédica/métodos , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Feminino , Humanos , Circulação Placentária , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/etiologia , Gravidez , Fatores de Risco , Transdução de Sinais , Especificidade da Espécie
6.
Microcirculation ; 24(6)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28370794

RESUMO

BACKGROUND: Short-term IV sRLX (recombinant human relaxin-2) infusion enhances endothelium-dependent relaxation in mesenteric arteries. This is initially underpinned by increased NO followed by a transition to prostacyclin. The effects of short-term IV sRLX treatment on pressure-induced myogenic tone and vascular remodeling in these arteries are unknown. Therefore, we investigated the effects of sRLX infusion on pressure-induced myogenic tone and passive mechanical wall properties in mesenteric arteries. METHODS: Mesenteric artery myogenic tone and passive mechanics were examined after 48-hours and 10-days infusion of sRLX. Potential mechanisms of action were assessed by pressure myography, qPCR, and Western blot analysis. RESULTS: Neither 48-hours nor 10-days sRLX treatment had significant effects on myogenic tone, passive arterial wall stiffness, volume compliance, or axial lengthening. However, in 48-hours sRLX -treated rats, incubation with the NO synthase blocker L-NAME significantly increased myogenic tone (P<.05 vs placebo), demonstrating an increased contribution of NO to the regulation of myogenic tone. eNOS dimerization, but not phosphorylation, was significantly upregulated in the arteries of sRLX -treated rats. CONCLUSION: In mesenteric arteries, 48-hours sRLX treatment upregulates the role of NO in the regulation of myogenic tone by enhancing eNOS dimerization, without altering overall myogenic tone or vascular remodeling.


Assuntos
Artérias Mesentéricas/efeitos dos fármacos , Tono Muscular/efeitos dos fármacos , Relaxina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Multimerização Proteica , Ratos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Relaxina/administração & dosagem , Fatores de Tempo
7.
Microcirculation ; 23(8): 631-636, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27653183

RESUMO

The peptide hormone relaxin is recognized for its connective tissue remodeling actions in the reproductive tract during pregnancy and parturition, but it also has vascular remodeling actions independent of pregnancy. Recombinant human relaxin (serelaxin) treatment in male and non-pregnant female rodents enhances passive arterial compliance in the renal vasculature. This review focuses on serelaxin's actions on passive mechanical wall properties in small arteries and highlights the diversity of responses to serelaxin treatment in rodents. Different experimental approaches (duration of serelaxin treatment, rat strain, age) and animal models of disease (obesity, hypertension) will be considered. Most studies in young rodents demonstrate that serelaxin treatment fails to alter passive compliance in resistance-size arteries (mesenteric and femoral arteries and cerebral parenchymal arterioles), suggesting that serelaxin's beneficial effects are minimal in healthy animals. Short-term serelaxin treatment (5d) in aged, obese, and spontaneously hypertensive rats (SHRs) is largely without effect on passive mechanical wall properties. However, a longer duration of serelaxin treatment in SHRs (14d) enhances passive compliance in large muscular arteries as well as resistance-size arteries. In conclusion, serelaxin is capable of vascular remodeling. Its actions are vascular bed-dependent, more prominent in disease, and likely requires a longer duration of treatment to be effective.


Assuntos
Artérias/efeitos dos fármacos , Complacência (Medida de Distensibilidade)/efeitos dos fármacos , Relaxina/uso terapêutico , Animais , Artérias/fisiologia , Fenômenos Biomecânicos/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Rim/irrigação sanguínea , Ratos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Relaxina/farmacologia , Projetos de Pesquisa , Fatores de Tempo
8.
Pharmacol Res ; 111: 325-335, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27363948

RESUMO

Increased vascular stiffness and reduced endothelial nitric oxide (NO) bioavailability are characteristic of diabetes. Whether these are evident at a more moderate levels of hyperglycaemia has not been investigated. The objectives of this study were to examine the association between the level of glycaemia and resistance vasculature phenotype, incorporating both arterial stiffness and endothelial function. Diabetes was induced in male Sprague Dawley rats with streptozotocin (STZ; 55mg/kg i.v.) and followed for 8 weeks. One week post STZ, diabetic rats were allocated to either moderate (∼20mM blood glucose, 6-7U/insulins.c. daily) or severe hyperglycaemia (∼30mM blood glucose, 1-2U/insulins.c. daily as required). At study end, rats were anesthetized, and the mesenteric arcade was collected. Passive mechanical wall properties were assessed by pressure myography. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) were assessed using wire myography. Our results demonstrated for the first time that mesenteric arteries from both moderate and severely hyperglycaemic diabetic rats exhibited outward hypertrophic remodelling and increased axial stiffness compared to arteries from non-diabetic rats. Secondly, mesenteric arteries from severely (∼30mM blood glucose), but not moderately hyperglycaemic (∼20mM blood glucose) rats exhibit a significant reduction to ACh sensitivity compared to their non-diabetic counterparts. This endothelial dysfunction was associated with significant reduction in endothelium-derived hyperpolarisation and endothelium-dependent NO-mediated relaxation. Interestingly, endothelium-derived nitroxyl (HNO)-mediated relaxation was intact. Therefore, moderate hyperglycaemia is sufficient to induce adverse structural changes in the mesenteric vasculature, but more severe hyperglycaemia is essential to cause endothelial dysfunction.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Angiopatias Diabéticas/etiologia , Endotélio Vascular/fisiopatologia , Artérias Mesentéricas/fisiopatologia , Remodelação Vascular , Rigidez Vascular , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/fisiopatologia , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Resistência Vascular , Vasodilatação , Vasodilatadores/farmacologia
9.
Am J Physiol Heart Circ Physiol ; 309(2): H285-96, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25957220

RESUMO

The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging.


Assuntos
Aorta/metabolismo , Óxido Nítrico/metabolismo , Relaxina/deficiência , Superóxidos/metabolismo , Vasodilatação , Fatores Etários , Animais , Aorta/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Relação Dose-Resposta a Droga , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/genética , Fatores Sexuais , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
FASEB J ; 28(1): 275-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036884

RESUMO

Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 µg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.


Assuntos
Artérias/efeitos dos fármacos , Artérias/metabolismo , Bradicinina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/farmacologia , Veias/efeitos dos fármacos , Veias/metabolismo , Animais , Endotélio Vascular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Ratos , Ratos Wistar
11.
Hypertension ; 81(4): 738-751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318714

RESUMO

Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.


Assuntos
Doenças da Aorta , Aterosclerose , Humanos , RNA , Aorta/metabolismo , Doenças da Aorta/genética , Perfilação da Expressão Gênica , Aterosclerose/genética , Aterosclerose/metabolismo
12.
Front Cardiovasc Med ; 11: 1419958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883991

RESUMO

Introduction: Marginal zone and follicular B cells are known to contribute to the development of angiotensin II-induced hypertension in mice, but the effector function(s) mediating this effect (e.g., antigen presentation, antibody secretion and/or cytokine production) are unknown. B cell differentiation into antibody secreting cells (ASCs) requires the transcription factor Blimp-1. Here, we studied mice with a Blimp-1 deficiency in follicular B cells to evaluate whether antibody secretion underlies the pro-hypertensive action of B cells. Methods: 10- to 14-week-old male follicular B cell Blimp-1 knockout (FoB-Blimp-1-KO) and floxed control mice were subcutaneously infused with angiotensin II (0.7 mg/kg/d) or vehicle (0.1% acetic acid in saline) for 28 days. BP was measured by tail-cuff plethysmography or radiotelemetry. Pulse wave velocity was measured by ultrasound. Aortic collagen was quantified by Masson's trichrome staining. Cell types and serum antibodies were quantified by flow cytometry and a bead-based multiplex assay, respectively. Results: In control mice, angiotensin II modestly increased serum IgG3 levels and markedly increased BP, cardiac hypertrophy, aortic stiffening and fibrosis. FoB-Blimp-1-KO mice exhibited impaired IgG1, IgG2a and IgG3 production despite having comparable numbers of B cells and ASCs to control mice. Nevertheless, FoB-Blimp-1-KO mice still developed hypertension, cardiac hypertrophy, aortic stiffening and fibrosis following angiotensin II infusion. Conclusions: Inhibition of follicular B cell differentiation into ASCs did not protect against angiotensin II-induced hypertension or vascular compliance. Follicular B cell functions independent of their differentiation into ASCs and ability to produce high-affinity antibodies, or other B cell subtypes, are likely to be involved in angiotensin II-induced hypertension.

13.
Biomolecules ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927040

RESUMO

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities affecting ~25% of adults and is linked to chronic diseases such as cardiovascular disease, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are key drivers of MetS. Hesperidin, a citrus bioflavonoid, has demonstrated antioxidant and anti-inflammatory properties; however, its effects on MetS are not fully established. We aimed to determine the optimal dose of hesperidin required to improve oxidative stress, systemic inflammation, and glycemic control in a novel mouse model of MetS. Male 5-week-old C57BL/6 mice were fed a high-fat, high-salt, high-sugar diet (HFSS; 42% kcal fat content in food and drinking water with 0.9% saline and 10% high fructose corn syrup) for 16 weeks. After 6 weeks of HFSS, mice were randomly allocated to either the placebo group or low- (70 mg/kg/day), mid- (140 mg/kg/day), or high-dose (280 mg/kg/day) hesperidin supplementation for 12 weeks. The HFSS diet induced significant metabolic disturbances. HFSS + placebo mice gained almost twice the weight of control mice (p < 0.0001). Fasting blood glucose (FBG) increased by 40% (p < 0.0001), plasma insulin by 100% (p < 0.05), and HOMA-IR by 150% (p < 0.0004), indicating insulin resistance. Hesperidin supplementation reduced plasma insulin by 40% at 140 mg/kg/day (p < 0.0001) and 50% at 280 mg/kg/day (p < 0.005). HOMA-IR decreased by 45% at both doses (p < 0.0001). Plasma hesperidin levels significantly increased in all hesperidin groups (p < 0.0001). Oxidative stress, measured by 8-OHdG, was increased by 40% in HFSS diet mice (p < 0.001) and reduced by 20% with all hesperidin doses (p < 0.005). In conclusion, hesperidin supplementation reduced insulin resistance and oxidative stress in HFSS-fed mice, demonstrating its dose-dependent therapeutic potential in MetS.


Assuntos
Citrus , Suplementos Nutricionais , Modelos Animais de Doenças , Hesperidina , Resistência à Insulina , Síndrome Metabólica , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Hesperidina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Masculino , Camundongos , Citrus/química , Relação Dose-Resposta a Droga , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Antioxidantes/farmacologia
14.
Sci Rep ; 14(1): 1837, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246932

RESUMO

Vascular inflammation and fibrosis are hallmarks of hypertension and contribute to the development of cardiovascular disease and cognitive impairment. However, current anti-hypertensive drugs do not treat the underlying tissue damage, such as inflammation-associated fibrosis. Human amnion epithelial cells have several properties amenable for treating vascular pathology. This study tested the effect of amnion epithelial cells on vascular pathology and cognitive impairment during hypertension. Male C57Bl6 mice (8-12 weeks) were administered vehicle (saline; n = 58) or angiotensin II (0.7 mg/kg/d, n = 56) subcutaneously for 14 d. After surgery, a subset of mice were injected with 106 amnion epithelial cells intravenously. Angiotensin II infusion increased systolic blood pressure, aortic pulse wave velocity, accumulation of aortic leukocytes, and aortic mRNA expression of collagen subtypes compared to vehicle-infused mice (n = 9-11, P < 0.05). Administration of amnion epithelial cells attenuated these effects of angiotensin II (P < 0.05). Angiotensin II-induced cognitive impairment was prevented by amnion epithelial cell therapy (n = 7-9, P < 0.05). In the brain, amnion epithelial cells modulated some of the inflammatory genes that angiotensin II promoted differential expression of (n = 6, p-adjusted < 0.05). These findings suggest that amnion epithelial cells could be explored as a potential therapy to inhibit vascular pathology and cognitive impairment during hypertension.


Assuntos
Disfunção Cognitiva , Hipertensão , Humanos , Animais , Masculino , Camundongos , Âmnio , Angiotensina II , Análise de Onda de Pulso , Camundongos Endogâmicos C57BL , Hipertensão/terapia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Células Epiteliais , Inflamação , Fibrose
15.
Biol Reprod ; 89(1): 18, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23718984

RESUMO

Pregnancy is associated with a progressive remodeling of the uterine artery. This adaptation is influenced by local and systemic pregnancy-dependent factors. We recently demonstrated that the peptide hormone relaxin mediates uterine artery remodeling in late pregnant rats. The objective of this study in relaxin gene knockout (Rln(-/-)) mice was to test the hypothesis that relaxin deficiency throughout pregnancy disrupts uterine artery remodeling, an effect that is exacerbated by aging and reversed with relaxin treatment. Passive mechanical wall properties and extracellular matrix components were measured using pressure myography, quantitative PCR, and zymography in uterine arteries from pregnant wild-type (Rln(+/+)) and Rln(-/-) mice aged 5 and 8 mo on Days 12.5 and 17.5 pregnancy. In a second study, 8-mo-old Rln(-/-) mice received either placebo or human recombinant relaxin subcutaneously for 5 days from Day 12.5 pregnancy. Relaxin deficiency in pregnancy did not alter uterine artery remodeling in young mice. However, remodeling was impaired in older pregnant Rln(-/-) mice, resulting in significantly stiffer uterine arteries. Uterine arteries of aged Rln(-/-) pregnant mice had increased expression of elastin, whereas several matrix metalloproteinases and cell adhesion molecules were decreased relative to Rln(+/+) mice. Fetal weight was also significantly reduced in Rln(-/-) mice in late pregnancy in both young and old dams, whereas placental weight was unchanged. Arterial stiffness and reduced fetal weight were reversed after relaxin treatment. In conclusion, relaxin deficiency compromises uterine artery remodeling in older pregnant females, increasing the risk of pregnancy complications such as hypertension and intrauterine growth restriction.


Assuntos
Envelhecimento/fisiologia , Relaxina/fisiologia , Artéria Uterina/fisiologia , Rigidez Vascular , Animais , Adesão Celular , Proteínas da Matriz Extracelular/metabolismo , Feminino , Desenvolvimento Fetal , Gelatinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Placentação , Gravidez , Artéria Uterina/anatomia & histologia
16.
Sci Rep ; 13(1): 10943, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414864

RESUMO

The association between constipation and cardiovascular risk is unclear. This population-level matched cohort study compared the association of constipation with hypertension and incident cardiovascular events in 541,172 hospitalized patients aged ≥ 60 years. For each constipation admission, one exact age-matched non-constipated admission was randomly selected from all hospitalizations within 2 weeks to form the comparison cohort. The association of constipation with hypertension and cardiovascular events (myocardial infarction, angina, stroke and transient ischemic attack) were analysed using a series of binary logistic regressions adjusting for age, sex, cardiovascular risk factors, gastrointestinal disorders and sociological factors. Patients with constipation had a higher multivariate-adjusted risk for hypertension (odds ratio [OR], 1.96; 95% confidence interval [CI] 1.94-1.99; P < 0.001). Compared to patients with neither constipation nor hypertension, there was a higher multivariate-adjusted risk for cardiovascular events in patients with constipation alone (OR, 1.58; 95% CI 1.55-1.61; P < 0.001) or hypertension alone (OR, 6.12; 95% CI 5.99-6.26; P < 0.001). In patients with both constipation and hypertension, the risk for all cardiovascular events appeared to be additive (OR, 6.53; 95% CI 6.40-6.66; P < 0.001). In conclusion, among hospital patients aged 60 years or older, constipation is linked to an increased risk of hypertension and cardiovascular events. These findings suggest that interventions to address constipation may reduce cardiovascular risk in elderly patients.


Assuntos
Doenças Cardiovasculares , Hipertensão , Acidente Vascular Cerebral , Idoso , Humanos , Austrália/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos de Coortes , Constipação Intestinal/complicações , Constipação Intestinal/epidemiologia , Hipertensão/complicações , Hipertensão/epidemiologia , Pacientes Internados , Fatores de Risco , Acidente Vascular Cerebral/complicações
17.
Neuromolecular Med ; 25(4): 451-456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37086380

RESUMO

Obesity is a major global health concern, with prevalence rates rapidly rising due to increased availability of highly processed foods rich in fats and/or sugars and technological advances promoting more sedentary behaviour. There is increasing evidence to suggest that obesity predisposes individuals to developing cognitive impairment and dementia. However, the relationship between the brain and the peripheral metabolic state is complex, and many of the underlying mechanisms of cognitive impairment in obesity are yet to be fully elucidated. To better understand the links between obesity and dementia, further work is required to determine pathological changes occurring in the brain during obesity. In this mini-review, we discuss the role of two pathological features of obesity (the gut-brain axis and systemic inflammation) and their potential contribution to dementia.


Assuntos
Disfunção Cognitiva , Demência , Humanos , Obesidade/complicações , Encéfalo , Inflamação , Demência/epidemiologia , Demência/etiologia
18.
Life Sci ; 320: 121542, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871935

RESUMO

AIMS: Endothelial dysfunction and arterial stiffness are hallmarks of hypertension, and major risk factors for cardiovascular disease. BPH/2J (Schlager) mice are a genetic model of spontaneous hypertension, but little is known about the vascular pathophysiology of these mice and the region-specific differences between vascular beds. Therefore, this study compared the vascular function and structure of large conductance (aorta and femoral) and resistance (mesenteric) arteries of BPH/2J mice with their normotensive BPN/2J counterparts. MAIN METHODS: Blood pressure was measured in BPH/2J and BPN/3J mice via pre-implanted radiotelemetry probes. At endpoint, vascular function and passive mechanical wall properties were assessed using wire and pressure myography, qPCR and histology. KEY FINDINGS: Mean arterial blood pressure was elevated in BPH/2J mice compared to BPN/3J controls. Endothelium-dependent relaxation to acetylcholine was attenuated in both the aorta and mesenteric arteries of BPH/2J mice, but through different mechanisms. In the aorta, hypertension reduced the contribution of prostanoids. Conversely, in the mesenteric arteries, hypertension reduced the contribution of both nitric oxide and endothelium-dependent hyperpolarization. Hypertension reduced volume compliance in both femoral and mesenteric arteries, but hypertrophic inward remodelling was only observed in the mesenteric arteries of BPH/2J mice. SIGNIFICANCE: This is the first comprehensive investigation of vascular function and structural remodelling in BPH/2J mice. Overall, hypertensive BPH/2J mice exhibited endothelial dysfunction and adverse vascular remodelling in the macro- and microvasculature, underpinned by distinct region-specific mechanisms. This highlights BPH/2J mice as a highly suitable model for evaluating novel therapeutics to treat hypertension-associated vascular dysfunction.


Assuntos
Hipertensão , Animais , Camundongos , Artérias/patologia , Pressão Sanguínea/fisiologia , Endotélio/patologia , Endotélio Vascular/patologia , Artérias Mesentéricas , Sistema Nervoso Simpático/fisiologia , Vasodilatação
19.
Sci Rep ; 13(1): 21644, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062083

RESUMO

Obesity and vascular dysfunction are independent and sexually dimorphic risk factors for cardiovascular disease. A high fat diet (HFD) is often used to model obesity in mice, but the sex-specific effects of this diet on aortic inflammation and function are unclear. Therefore, we characterized the aortic immune cell profile and function in 6-week-old male and female C57BL/6 mice fed a normal chow diet (NCD) or HFD for 10 weeks. Metabolic parameters were measured weekly and fortnightly. At end point, aortic immune cell populations and endothelial function were characterized using flow cytometry and wire myography. HFD-male mice had higher bodyweight, blood cholesterol, fasting blood glucose and plasma insulin levels than NCD mice (P < 0.05). HFD did not alter systolic blood pressure (SBP), glycated hemoglobin or blood triglycerides in either sex. HFD-females had delayed increases in bodyweight with a transient increase in fasting blood glucose at week 8 (P < 0.05). Flow cytometry revealed fewer proinflammatory aortic monocytes in females fed a HFD compared to NCD. HFD did not affect aortic leukocyte populations in males. Conversely, HFD impaired endothelium-dependent vasorelaxation, but only in males. Overall, this highlights biological sex as a key factor determining vascular disease severity in HFD-fed mice.


Assuntos
Resistência à Insulina , Doenças não Transmissíveis , Masculino , Feminino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Glicemia/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação/metabolismo
20.
Front Psychiatry ; 13: 831358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444568

RESUMO

The neurobiological and behavioral underpinnings linking mental disorders, in particular, major depressive disorder (MDD), with cardiovascular disorders are a matter of debate. Recent research focuses on visceral (intra-abdominal and epicardial) adipose tissue and inflammation and their impact on the development of cardiometabolic disorders. Intra-abdominal adipose tissue is defined as an endocrine active fat compartment surrounding inner organs and is associated with type 2 diabetes mellitus, a risk factor for the later development of cardiovascular disorders. Epicardial (pericardial) adipose tissue is a fat compartment surrounding the heart with close proximity to the arteries supporting the heart. Visceral adipose tissue (VAT) is an important source of inflammatory mediators that, in concert with other risk factors, plays a leading role in cardiovascular diseases. In conjunction with the behavioral (physical inactivity, sedentary lifestyle), psychological (adherence problems), and hormonal (dysfunction of the hypothalamus-pituitary-adrenal axis with subsequent hypercortisolism) alterations frequently accompanying MDD, an enhanced risk for cardiovascular disorders results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA