Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 174768, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009147

RESUMO

Wastewater Treatment Plants (WWTP) are a major repository and entrance path of nanoparticles (NP) in the environment and hence play a major role in the final NP fate and toxicity. Studies on silver nanoparticles (AgNP) transport via the WWTP system and uptake by aquatic organisms have so far been carried out using unrealistically high AgNP concentrations, unlikely to be encountered in the aquatic environment. The use of high AgNP concentrations is necessitated by both the low sensitivity of the detection methods used and the need to distinguish background Ag from spiked AgNP. In this study, isotopically enriched 109AgNP were synthesized to overcome these shortcomings and characterized by a broad range of methods including transmission electron microscopy, dynamic and electrophoretic light scattering. 109AgNP and gold NP (AuNP) were spiked to a pilot wastewater treatment plant fed with municipal wastewater for up to 21 days. AuNP were used as chemically less reactive tracer. The uptake of the pristine and transformed NP present in the effluent was assessed using the benthic amphipod Hyalella azteca in fresh- and brackish water exposures at environmentally relevant concentrations of 30 to 500 ng Au/L and 39 to 260 ng Ag/L. The unique isotopic signature of the 109AgNP allowed to detect the material at environmentally relevant concentrations in the presence of a much higher natural Ag background. The results show that the transformations reduce the NP uptake at environmentally relevant exposure concentrations. For 109Ag, lower accumulation factors (AF) were obtained after exposure to transformed NP (250-350) compared to the AF values obtained for pristine 109AgNP (750-840). The reduced AF values observed for H. azteca exposed to effluent from the AuNP-spiked WWTP indicate that biological transformation processes (e.g. eco-corona formation) seem to be involved in addition to chemical transformation.


Assuntos
Anfípodes , Formigas , Ouro , Nanopartículas Metálicas , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Animais , Anfípodes/efeitos dos fármacos , Formigas/efeitos dos fármacos , Disponibilidade Biológica , Monitoramento Ambiental/métodos , Ouro/farmacocinética , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
2.
Neurotoxicology ; 103: 256-265, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38977203

RESUMO

The US EPA's Toxicity Forecaster (ToxCast) is a suite of high-throughput in vitro assays to screen environmental toxicants and predict potential toxicity of uncharacterized chemicals. This work examines the relevance of ToxCast assay intended gene targets to putative molecular initiating events (MIEs) of neurotoxicants. This effort is needed as there is growing interest in the regulatory and scientific communities about developing new approach methodologies (NAMs) to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. Assay gene function (GeneCards, NCBI-PUBMED) was used to categorize gene target neural relevance (1 = neural, 2 = neural development, 3 = general cellular process, 3 A = cellular process critical during neural development, 4 = unlikely significance). Of 481 unique gene targets, 80 = category 1 (16.6 %); 16 = category 2 (3.3 %); 303 = category 3 (63.0 %); 97 = category 3 A (20.2 %); 82 = category 4 (17.0 %). A representative list of neurotoxicants (548) was researched (ex. PUBMED, PubChem) for neurotoxicity associated MIEs/Key Events (KEs). MIEs were identified for 375 compounds, whereas only KEs for 173. ToxCast gene targets associated with MIEs were primarily neurotransmitter (ex. dopaminergic, GABA)receptors and ion channels (calcium, sodium, potassium). Conversely, numerous MIEs associated with neurotoxicity were absent. Oxidative stress (OS) mechanisms were 79.1 % of KEs. In summary, 40 % of ToxCast assay gene targets are relevant to neurotoxicity mechanisms. Additional receptor and ion channel subtypes and increased OS pathway coverage are identified for potential future assay inclusion to provide more complete coverage of neural and developmental neural targets in assessing neurotoxicity.


Assuntos
Ensaios de Triagem em Larga Escala , Síndromes Neurotóxicas , Ensaios de Triagem em Larga Escala/métodos , Animais , Humanos , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade/métodos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA