RESUMO
Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.
RESUMO
The current method for diagnosing methamphetamine use disorder (MUD) relies on self-reports and interviews with psychiatrists, which lack scientific rigor. This highlights the need for novel biomarkers to accurately diagnose MUD. In this study, we identified transcriptome biomarkers using hair follicles and proposed a diagnostic model for monitoring the MUD treatment process. We performed RNA sequencing analysis on hair follicle cells from healthy controls and former and current MUD patients who had been detained in the past for illegal use of methamphetamine (MA). We selected candidate genes for monitoring MUD patients by performing multivariate analysis methods, such as PCA and PLS-DA, and PPI network analysis. We developed a two-stage diagnostic model using multivariate ROC analysis based on the PLS-DA method. We constructed a two-step prediction model for MUD diagnosis using multivariate ROC analysis, including 10 biomarkers. The first step model, which distinguishes non-recovered patients from others, showed very high accuracy (prediction accuracy, 98.7%). The second step model, which distinguishes almost-recovered patients from healthy controls, showed high accuracy (prediction accuracy, 81.3%). This study is the first report to use hair follicles of MUD patients and to develop a MUD prediction model based on transcriptomic biomarkers, which offers a potential solution to improve the accuracy of MUD diagnosis and may lead to the development of better pharmacological treatments for the disorder in the future.
Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , Humanos , Metanfetamina/efeitos adversos , Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico , Transtornos Relacionados ao Uso de Anfetaminas/genética , Folículo Piloso , Curva ROC , BiomarcadoresRESUMO
Statins are a class of lipid-lowering drugs that have recently been used in drug repositioning in the treatment of human cancer. However, the underlying mechanism of statin-induced cancer cell death has not been clearly defined. In the present study, we evaluated the anticancer effect of pitavastatin on oral squamous cell carcinoma (OSCC), SCC15 and SCC4 cells and found that FOXO3a might be a direct target in pitavastatin-induced cancer cell death. Our data revealed that pitavastatin selectively suppressed cell viability and induced intrinsic apoptosis in a FOXO3a-dependent manner in SCC15 cells while no effect was observed in SCC4 cells. Notably, treatment with pitavastatin in SCC15 cells induced the nuclear translocation of FOXO3a via dual regulation of two upstream kinases, AMPK and Akt, resulting in the up-regulation of PUMA, a transcriptional target gene of FOXO3a. Furthermore, our data revealed that FOXO3a-mediated PUMA induction plays a role in pitavastatin-induced intrinsic apoptosis in SCC15 cells. Taken together, our findings suggest that pitavastatin activates the FOXO3a/PUMA apoptotic axis by regulation of nuclear translocation of FOXO3a via Akt/FOXO3a or AMPK/FOXO3a signalling. Therefore, these findings might help to elucidate the underlying mechanism of the anticancer effects of pitavastatin on OSCC.
Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteína Forkhead Box O3/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Quinolinas/farmacologia , Adenilato Quinase/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Biológicos , Metástase Neoplásica , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Methamphetamine (MA) use disorder is a chronic neuropsychiatric disease characterized by recurrent binge episodes, intervals of abstinence, and relapses to MA use. Therefore, identification of the key genes and pathways involved is important for improving the diagnosis and treatment of this disorder. In this study, high-throughput RNA sequencing was performed to find the key genes and examine the comparability of gene expression between whisker follicles and the striatum of rats following MA self-administration. A total of 253 and 87 differentially expressed genes (DEGs) were identified in whisker follicles and the striatum, respectively. Multivariate and network analyses were performed on these DEGs to find hub genes and key pathways within the constructed network. A total of 129 and 49 genes were finally selected from the DEG sets of whisker follicles and of the striatum. Statistically significant DEGs were found to belong to the classes of genes involved in nicotine addiction, cocaine addiction, and amphetamine addiction in the striatum as well as in Parkinson's, Huntington's, and Alzheimer's diseases in whisker follicles. Of note, several genes and pathways including retrograde endocannabinoid signaling and the synaptic vesicle cycle pathway were common between the two tissues. Therefore, this study provides the first data on gene expression levels in whisker follicles and in the striatum in relation to MA reward and thereby may accelerate the research on the whisker follicle as an alternative source of biomarkers for the diagnosis of MA use disorder.
Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/genética , Folículo Piloso/efeitos dos fármacos , Metanfetamina/farmacologia , Transcriptoma/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Transtornos Relacionados ao Uso de Anfetaminas/patologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Piloso/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ratos , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Vibrissas/efeitos dos fármacos , Vibrissas/metabolismoRESUMO
Methamphetamine (MA) is a highly addictive central nervous system stimulant. Drug addiction is not a static condition but rather a chronically relapsing disorder. Hair is a valuable and stable specimen for chronic toxicological monitoring as it retains toxicants and metabolites. The primary focus of this study was to discover the metabolic effects encompassing diverse pathological symptoms of MA addiction. Therefore, metabolic alterations were investigated in human hair following heavy MA abuse using both targeted and untargeted mass spectrometry and through integrated network analysis. The statistical analyses (t-test, variable importance on projection score, and receiver-operator characteristic curve) demonstrated that 32 metabolites (in targeted metabolomics) as well as 417 and 224 ion features (in positive and negative ionization modes of untargeted metabolomics, respectively) were critically dysregulated. The network analysis showed that the biosynthesis or metabolism of lipids, such as glycosphingolipids, sphingolipids, glycerophospholipids, and ether lipids, as well as the metabolism of amino acids (glycine, serine and threonine; cysteine and methionine) is affected by heavy MA abuse. These findings reveal crucial metabolic effects caused by MA addiction, with emphasis on the value of human hair as a diagnostic specimen for determining drug addiction, and will aid in identifying robust diagnostic markers and therapeutic targets.
Assuntos
Anfetamina/análise , Estimulantes do Sistema Nervoso Central/análise , Cabelo/química , Metanfetamina/análise , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Adulto , Aminoácidos/química , Aminoácidos/classificação , Aminoácidos/isolamento & purificação , Aminoácidos/metabolismo , Anfetamina/administração & dosagem , Anfetamina/metabolismo , Estudos de Casos e Controles , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/metabolismo , Glicerofosfolipídeos/química , Glicerofosfolipídeos/classificação , Glicerofosfolipídeos/isolamento & purificação , Glicerofosfolipídeos/metabolismo , Glicoesfingolipídeos/química , Glicoesfingolipídeos/classificação , Glicoesfingolipídeos/isolamento & purificação , Glicoesfingolipídeos/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Metabolômica/métodos , Metanfetamina/administração & dosagem , Metanfetamina/metabolismo , Pessoa de Meia-Idade , Análise de Componente Principal , Esfingolipídeos/química , Esfingolipídeos/classificação , Esfingolipídeos/isolamento & purificação , Esfingolipídeos/metabolismo , Detecção do Abuso de Substâncias/métodos , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Espectrometria de Massas em TandemRESUMO
Arrest defective 1 (ARD1), also known as N(alpha)-acetyltransferase 10 (NAA10) was originally identified as an N-terminal acetyltransferase (NAT) that catalyzes the acetylation of N-termini of newly synthesized peptides. After that, mammalian ARD1/NAA10 expanded its' role to lysine acetyltransferase (KAT) that post-translationally acetylates internal lysine residues of proteins. ARD1/NAA10 is the only enzyme with both NAT and KAT activities. However, recent studies on the role of human ARD1/NAA10 (hARD1/NAA10) in lysine acetylation are contradictory, as crystal structure and in vitro acetylation assay results revealed the lack of KAT activity. Thus, the role of hARD1/NAA10 in lysine acetylation is still debating. Here, we found a clue that possibly explains these complicated and controversial results on KAT activity of hARD1/NAA10. Recombinant hARD1/NAA10 exhibited KAT activity, which disappeared soon in vitro. Size-exclusion analysis revealed that most recombinant hARD1/NAA10 formed oligomers over time, resulting in the loss of KAT activity. While oligomeric recombinant hARD1/NAA10 lost its ability for lysine acetylation, its monomeric form clearly exhibited lysine acetylation activity in vitro. We also characterized the KAT activity of hARD1/NAA10 that was influenced by several experimental conditions, including concentration of reactants and reaction time. Taken together, our study proves that recombinant hARD1/NAA10 exhibits KAT activity in vitro but only under accurate conditions, including reactant concentrations and reaction duration.
Assuntos
Lisina Acetiltransferases/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Acetilação , Diálise , Escherichia coli , Humanos , Lisina/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/isolamento & purificação , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismoRESUMO
Persistent neurochemical disturbances by repeating drug reward and withdrawal lead to addiction. Particularly, drug withdrawal, usually starting within hours of the last dose, is considered as a critical step in the transition to addiction and a treatment clue. The aim of this study was to uncover metabolic effects associated with methamphetamine (MA) short-term abstinence using both non-targeted and targeted metabolomics. Metabolic alterations were investigated in rat plasma collected immediately after 16 days of MA self-administration and after 12 and 24 h of abstinence. Principal component analysis revealed that the highest level of separation occurred between the 24 h and saline (control) groups based on the significantly changed ion features, 257/320/333 and 331/409/388, in the SA/12 h/24 h groups in positive and negative modes of UPLC-QTOF-ESI-MS, respectively. Targeted metabolomics revealed dynamic changes in the biosynthesis/metabolism of amino acids, including the phenylalanine, tyrosine, and tryptophan biosynthesis and the valine, leucine, and isoleucine biosynthesis. Integrating non-targeted and targeted metabolomics data uncovered rapid and distinct changes in the metabolic pathways involved in energy metabolism, the nervous system, and membrane lipid metabolism. These findings provide essential knowledge of the dynamic metabolic effects associated with short-term MA abstinence and may help identify early warning signs of MA dependence.
Assuntos
Metabolismo Energético , Metabolômica/métodos , Metanfetamina/administração & dosagem , Síndrome de Abstinência a Substâncias/metabolismo , Aminoácidos/biossíntese , Aminoácidos/sangue , Aminoácidos/metabolismo , Animais , Cromatografia Líquida/métodos , Masculino , Espectrometria de Massas/métodos , Redes e Vias Metabólicas , Análise de Componente Principal , Ratos Sprague-Dawley , Autoadministração , Síndrome de Abstinência a Substâncias/sangue , Síndrome de Abstinência a Substâncias/fisiopatologia , Fatores de TempoRESUMO
The concept of drug repositioning has recently received considerable attention in the field of oncology. In the present study, we propose that paroxetine can be used as a potent anticancer drug. Paroxetine, one of the selective serotonin reuptake inhibitors (SSRIs), has been widely prescribed for the treatment of depression and anxiety disorders. Recently, SSRIs have been reported to have anticancer activity in various types of cancer cells; however, the underlying mechanisms of their action are not yet known. In this study, we investigated the potential anticancer effect of paroxetine in human colorectal cancer cells, HCT116 and HT-29. Treatment with paroxetine reduced cell viability, which was associated with marked increase in apoptosis, in both the cell lines. Also, paroxetine effectively inhibited colony formation and 3D spheroid formation. We speculated that the mode of action of paroxetine might be through the inhibition of two major receptor tyrosine kinases - MET and ERBB3 - leading to the suppression of AKT, ERK and p38 activation and induction of JNK and caspase-3 pathways. Moreover, in vivo experiments revealed that treatment of athymic nude mice bearing HT-29 cells with paroxetine remarkably suppressed tumour growth. In conclusion, paroxetine is a potential therapeutic option for patients with colorectal cancer.
Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Paroxetina/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor ErbB-3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Nus , Inibidores Seletivos de Recaptação de Serotonina/farmacologiaRESUMO
Thiazolidinedione is a five-membered heterocycle that is widely used in drug discovery endeavors. In this study, we report the design, synthesis, and biological evaluation of a series of thiazolidinedione-based HDAC6 inhibitors. In particular, compound 6b exerts an excellent inhibitory activity against HDAC6 with an IC50 value of 21 nM, displaying a good HDAC6 selectivity over HDAC1. Compound 6b dose-dependently induces the acetylation level of α-tubulin via inhibition of HDAC6 in human neuroblastoma SH-SY5Y cell line. Moreover, compound 6b efficiently reverses methamphetamine-induced morphology changes of SH-SY5Y cells via regulating acetylation landscape of α-tubulin. Collectively, compound 6b represents a novel HDAC6-isoform selective inhibitor and demonstrates promising therapeutic potential for the treatment of methamphetamine addiction.
Assuntos
Descoberta de Drogas , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases , Tiazolidinedionas , Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Transtornos Relacionados ao Uso de Anfetaminas/enzimologia , Linhagem Celular Tumoral , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Tiazolidinedionas/síntese química , Tiazolidinedionas/química , Tiazolidinedionas/farmacologiaRESUMO
Metabolomics is a powerful tool used to understand comprehensive changes in the metabolic response and to study the phenotype of an organism by instrumental analysis. It most commonly involves mass spectrometry followed by data mining and metabolite assignment. For the last few decades, hair has been used as a valuable analytical sample to investigate retrospective xenobiotic exposure as it provides a wider window of detection than other biological samples such as saliva, plasma, and urine. Hair contains functional metabolomes such as amino acids and lipids. Moreover, segmental analysis of hair based on its growth rate can provide information on metabolic changes over time. Therefore, it has great potential as a metabolomics sample to monitor chronic diseases, including drug addiction or abnormal conditions. In the current review, the latest applications of hair metabolomics in animal studies and clinical settings are highlighted. For this purpose, we review and discuss the characteristics of hair as a metabolomics sample, the analytical techniques employed in hair metabolomics and the consequence of hair metabolome alterations in recent studies. Through this, the value of hair as an alternative biological sample in metabolomics is highlighted.
Assuntos
Cabelo/metabolismo , Metaboloma , Metabolômica , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Metabolômica/métodosRESUMO
BACKGROUND: Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we further determined whether the effect involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK) pathway. METHODS: We used the human dopaminergic neuroblastoma SH-SY5Y cell line, murine microglial BV2 cell line, and primary culture of rat embryo mesencephalic neurons. Pro-inflammatory cytokine production was monitored by ELISA and RT/real-time PCR. The cell cycle distribution and mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting, DNA-binding activity, and immunofluorescence staining to analyze the effect of AA on activation of the NF-κB, STAT3, MAPK-ERK, and apoptosis signaling pathways. RESULTS: METH induced TNF receptor (TNFR) expression and led to morphological changes of cells. Additionally, this drug increased pro-inflammatory cytokine (TNFα and IL-6) expression. AA significantly suppressed METH-induced TNFR expression in concentration dependent. Increased secretion of TNFα and IL-6 was inhibited in METH-stimulated neuronal cells by AA administration. AA showed significant protection against METH-induced translocation of NF-κB/STAT3 and ERK phosphorylation. AA inhibited METH-induced proteolytic fragmentation of caspase-3 and PARP. The pro-apoptotic protein Bax was significantly decreased, while the anti-apoptotic protein Bcl-xL was increased by AA treatment in METH-stimulated cells. A similar protective effect of AA on mitochondrial membrane integrity was also confirmed by flow cytometry and immunofluorescence staining. CONCLUSIONS: Based on the literatures and our findings, AA is a promising candidate for an anti-neurotoxic agent, and it can potentially be used for the prevention and treatment of various neurological disorders.
Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Metanfetamina/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Inflamação/induzido quimicamente , Camundongos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Neurônios/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismoRESUMO
Adiponectin predominantly secreted from adipose tissue has exhibited potent anti-proliferative properties in cancer cells via modulating cell cycle and apoptosis. FoxO3A, a Forkhead box O member of the transcription factor, plays a critical role in modulating expression of genes involved in cell death and/or survival. In this study, we investigated the role of FoxO3A signaling in anti-cancer activities of adiponectin. Herein, we have shown that treatment with globular adiponectin (gAcrp) increases p27 but decreases cyclinD1 expression in human hepatoma (HepG2) and breast (MCF-7) cancer cells. Gene ablation of FoxO3A prevented gAcrp-induced increase in p27 and decreased in cyclin D1 expression, and further ameliorated cell cycle arrest by gAcrp, indicating a critical role of FoxO3A in gAcrp-induced cell cycle arrest of cancer cells. Moreover, treatment with gAcrp also induced caspase-3/7 activation and increased Fas ligand (FasL) expression in both HepG2 and MCF-7 cells. Transfection with FoxO3A siRNA inhibited gAcrp-induced caspase-3/7 activation and FasL expression, suggesting that FoxO3A signaling also plays an important role in gAcrp-induced apoptosis of cancer cells. We also found that gene silencing of AMPK prevented gAcrp-induced nuclear translocation of FoxO3A in HepG2 and MCF-7 cells. In addition, suppression of AMPK also blocked gAcrp-induced cell cycle arrest and further attenuated gAcrp-induced caspase-3/7 activation, indicating that AMPK signaling plays a pivotal role in both gAcrp-induced cell cycle arrest and apoptosis via acting as an upstream signaling of FoxO3A. Taken together, our findings demonstrated that AMPK/FoxO3A axis plays a cardinal role in anti-proliferative effect of adiponectin in cancer cells.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Quinases Proteína-Quinases Ativadas por AMP , Apoptose/fisiologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Proteína Ligante Fas/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Células MCF-7 , Modelos Biológicos , Neoplasias/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Transdução de SinaisRESUMO
The effective cure for oral squamous cell carcinoma (OSCC) patients is challenging due late diagnosis and fatal metastasis. The standard diagnosis for OSCC often depends on the subjective interpretation of conventional histopathology. Additionally, there is no standard way for OSCC prognosis. Over the past decade, nano-mechanical stiffness has been considered as a quantitative measure for cancer diagnosis. Nevertheless, its application to OSCC diagnosis and prognosis is still in a primitive stage. In this study, we investigated whether the OSCC progression can be predicted by nano-mechanical properties in combination with biochemical properties, especially the epithelial-mesenchymal transition (EMT). Atomic force microscopy-based nano-mechanical measurements of three different OSCC cell lines-SCC-4, SCC-9, and SCC-15-were conducted together with biochemical analyses. The gradual upregulation of Snail2, N-cadherin, and vimentin and the simultaneous downregulation of E-cadherin were observed, and the degree of upregulation and downregulation was stronger in the order of the cell lines mentioned above. The strength of enhancement in migration was in the same order as well. Consistently, nano-mechanical stiffness was gradually decreased as the EMT progresses. These results suggest that the nano-mechanical assay could serve as a quantitative tool to predict the OSCC progression in the context of the EMT. Furthermore, we found that the upregulated vimentin, a major filamentous component of the cytoskeleton, may contribute to mechanical softening, which can be discerned from the role of actin filaments in mechanical stiffness. In conclusion, our combinational study proposes a novel way to elucidate the mechanism of OSCC progression and its therapeutic targets.
Assuntos
Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal , Neoplasias Bucais/patologia , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Módulo de Elasticidade , Humanos , Microscopia de Força Atômica , Fatores de Transcrição da Família Snail/metabolismo , Vimentina/metabolismoRESUMO
Non-small-cell lung cancer (NSCLC) is associated with diverse genetic alterations including mutation of epidermal growth factor receptor (EGFR). Isoliquiritigenin (ILQ), a chalcone derivative, possesses anticancer activities. In the present study, we investigated the effects of ILQ on the growth of tyrosine kinase inhibitor (TKI)-sensitive and -resistant NSCLC cells and elucidated its underlying mechanisms. Treatment with ILQ inhibited growth and induced apoptosis in both TKI-sensitive and -resistant NSCLC cells. ILQ-induced apoptosis was associated with the cleavage of caspase-3 and poly-(ADP-ribose)-polymerase, increased expression of Bim, and reduced expression of Bcl-2. In vitro kinase assay results revealed that ILQ inhibited the catalytic activity of both wild type and double mutant (L858R/T790M) EGFR. Treatment with ILQ inhibited the anchorage-independent growth of NIH3T3 cells stably transfected with either wild type or double-mutant EGFR with or without EGF stimulation. ILQ also reduced the phosphorylation of Akt and ERK1/2 in both TKI-sensitive and -resistant NSCLC cells, and attenuated the kinase activity of Akt1 and ERK2 in vitro. ILQ directly interacted with both wild type and double-mutant EGFR in an ATP-competitive manner. A docking model study showed that ILQ formed two hydrogen bonds (Glu-762 and Met-793) with wild type EGFR and three hydrogen bonds (Lys-745, Met-793, and Asp-855) with mutant EGFR. ILQ attenuated the xenograft tumor growth of H1975 cells, which was associated with decreased expression of Ki-67 and diminished phosphorylation of Akt and ERK1/2. Taken together, ILQ suppresses NSCLC cell growth by directly targeting wild type or mutant EGFR.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Mutação de Sentido Incorreto , Células NIH 3T3 , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The Akt, family of serine/threonine protein kinases functions as key regulators of multiple aspects of cell behavior, such as survival, proliferation, migration, and carcinogenesis. Notably, Akt exerts its anti-apoptotic effects through the phosphorylation of numerous substrates related with cell cycle, genome stability, and cancer development. In this report, nevertheless, we focused our view on the novel role of Akt which involves in a pro-apoptotic action by phosphorylating second mitochondria derived activator of caspases (Smac) protein during etoposide-induced apoptotic processes. Our data reveals that Akt could bind to and phosphorylate Smac at serine residue 67, which enhances the ability of Smac to interact with the cytosolic X-chromosome linked IAP (XIAP) protein. The cellular interaction of wild-type Smac with XIAP was enhanced with similar activation kinetics of Akt activity, while this interaction was markedly attenuated in cells expressing the phosphorylation-defective mutant S67A-Smac during etoposide-induced apoptosis. Moreover, we provide the evidence indicating that the phosphorylation of Smac at ser-67 markedly upregulates the caspase-3 activity by promoting the interaction of Smac with XIAP. Taken together, we propose that the phosphorylation of Smac by Akt might be a novel mechanism that involves in amplification of caspase cascade pathway during etoposide-induced apoptosis in HeLa cells.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose , Caspase 3/metabolismo , Etoposídeo/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Reguladoras de Apoptose , Caspase 3/genética , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Fosforilação , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismoRESUMO
Lung cancer is a leading cause of death worldwide and MET amplification is a major therapeutic limitation in acquired-resistance lung cancer. We hypothesized that butein, a phytochemical, can overcome gefitinib-induced resistance by targeting both EGFR and MET in non-small cell lung cancer (NSCLC). To investigate the ability of butein to target EGFR and MET, we used in silico docking, a library of natural compounds and kinase assays. The effects of butein on growth, induction of apoptosis and expression of EGFR/MET signaling targets were examined in HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) NSCLC cells. Results were confirmed in vivo by a HCC827 or HCC827GR cell xenograft mouse model, each treated with vehicle, butein or gefitinib. Butein inhibited phosphorylation and kinase activity of EGFR and MET as well as soft agar colony formation and decreased viability of HCC827 and HCC827GR cells. Butein increased apoptosis-related protein expression in these cells. Results were confirmed by co-treatment with inhibitors of EGFR/MET or double knock-down. Finally, xenograft study results showed that butein strongly suppressed HCC827 and HCC827GR tumor growth. Immunohistochemical data suggest that butein inhibited Ki-67 expression. These results indicate that butein has potent anticancer activity and targets both EGFR and MET in acquired-resistance NSCLC.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Chalconas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Gefitinibe , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismoRESUMO
Although epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been introduced for the treatment of non-small cell lung cancer (NSCLC), the emergence of secondary T790M mutation in EGFR or amplification of the Met proto-oncogene restrain the clinical success of EGFR-TKIs. Since heat shock protein-90 (Hsp90) stabilizes various oncoproteins including EGFR and c-Met, the inhibition of Hsp90 activity appears as a rational strategy to develop anticancer drugs. Despite preclinical efficacy of geldanamycin-anasamycin (GA)-derivatives containing benzoquinone moiety as Hsp90 inhibitors, the hepatotoxicity of these GA-derivatives restricts their therapeutic benefit. We have prepared WK-88 series of GA-derivatives, which lack the benzoquinone moiety. In this study, we have examined the anticancer effects of WK88-1 in Met-amplified- and gefitinib-resistant (HCC827GR) NSCLC cells and its parental HCC827 cells. Treatment with WK88-1 reduced the cell viability in both HCC827 and HCC827GR cells, which was associated with marked decrease in the constitutive expression of Hsp90 client proteins, such as EGFR, ErbB2, ErbB3, Met and Akt. Moreover, WK88-1 attenuated phosphorylation of these Hsp90 client proteins and reduced the anchorage-independent growth of HCC827GR cells. Administration of WK88-1 did not cause hepatotoxicity in animals and significantly reduced the growth of HCC827GR cells xenograft tumors in nude mice. Our study provides evidence that ErbB3 might be a client for Hsp90 in Met-amplified NSCLCs. In conclusion, we demonstrate that inhibition of Hsp90 dampens the activation of EGFR- or c-Met-mediated survival of Met-amplified NSCLCs and that WK88-1 as a Hsp90 inhibitor alleviates gefitinib resistance in HCC827GR cells.
Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Amplificação de Genes , Lactamas Macrocíclicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/genética , Quinazolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzoquinonas/química , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Gefitinibe , Humanos , Lactamas Macrocíclicas/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proto-Oncogene Mas , Receptor ErbB-3/metabolismoRESUMO
Heat shock protein 90 (Hsp90) represents an attractive cancer therapeutic target due to its role in the stabilization and maturation of many oncogenic proteins. We have designed a series of hybrid Hsp90 inhibitors by connecting the resorcinol ring of VER-49009 (2) and the trimethoxyphenyl ring of PU3 (3) using structure-based approach. Subsequent testing established that compound 1f inhibited gefitinib-resistant H1975 cell proliferation, brought about the degradation of Hsp90 client proteins including EGFR, Met, Her2 and Akt and induced the expression of Hsp70. The design, synthesis, and evaluation of 1f are described herein.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/patologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Persistent neurochemical and biological disturbances resulting from repeated cycles of drug reward, withdrawal, and relapse contribute to drug dependence. Methamphetamine (MA) is a psychostimulant with substantial abuse potential and neurotoxic effects, primarily affecting monoamine neurotransmitter systems in the brain. In this study, we aimed to explore the progression of drug dependence in rat models of MA self-administration, extinction, and reinstatement through targeted and non-targeted metabolomics analyses. Metabolic profiles were examined in rat plasma during the following phases: after 16 days of MA self-administration (Group M); after 16 days of self-administration followed by 14 days of extinction (Group MS); and after self-administration and extinction followed by a reinstatement injection of MA (Group MSM). Each group of MA self-administration, extinction, and reinstatement induces distinct changes in the metabolic pathways, particularly those related to the TCA cycle, arginine and proline metabolism, and arginine biosynthesis. Additionally, the downregulation of glycerophospholipids and sphingomyelins in Group MSM suggests their potential role in MA reinstatement. These alterations may signify the progressive deterioration of these metabolic pathways, possibly contributing to drug dependence following repeated cycles of drug reward, withdrawal, and relapse. These results provide valuable insights into the metabolic changes associated with MA use at various stages, potentially facilitating the discovery of early diagnostic biomarkers and therapeutic targets for MA use disorders.
Assuntos
Modelos Animais de Doenças , Metabolômica , Metanfetamina , Autoadministração , Animais , Metanfetamina/administração & dosagem , Metanfetamina/efeitos adversos , Metabolômica/métodos , Ratos , Masculino , Progressão da Doença , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Ratos Sprague-Dawley , Redes e Vias Metabólicas/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/efeitos adversos , Metaboloma/efeitos dos fármacos , Glicerofosfolipídeos/metabolismo , Extinção Psicológica/efeitos dos fármacos , Arginina/administração & dosagem , Arginina/metabolismoRESUMO
OBJECTIVE: Porphyromonas gingivalis is a major periodontopathogen that plays a role in the pathogenesis of periodontal disease. In this study, we investigated the effect of 18alpha-glycyrrhetinic acid (18α-GA), a natural triterpenoid compound derived from licorice root extract, on P. gingivalis lipopolysaccharide (LPS)-induced vascular permeability, which is a hallmark of inflammatory diseases such as periodontitis. METHODS: The inhibitory effects of 18α-GA on endothelial permeability were determined by measuring in vivo and in vitro endothelial permeability. Endothelial cells were pretreated with 18α-GA before exposure to P. gingivalis LPS, and total RNA or proteins were extracted and analyzed by reverse transcription polymerase chain reaction or western blotting. RESULTS: Porphyromonas gingivalis LPS-induced endothelial permeability was significantly inhibited by 18α-GA both in vivo and in vitro. 18α-GA reduces P. gingivalis LPS-induced gap formation of endothelial cells. Importantly, 18α-GA modulated the expression and secretion of interleukin-8 (IL-8), a key inducer of vascular permeability, by downregulating nuclear factor-κB (NF-κB). 18α-GA suppressed P. gingivalis LPS-stimulated inhibitor of kappa B (IκB) kinase activation, IκBα phosphorylation, and nuclear translocation of NF-κB. CONCLUSIONS: Overall, these findings suggest that 18α-GA significantly reduces P. gingivalis LPS-induced vascular permeability by repressing NF-κB-dependent endothelial IL-8 production, suggesting its therapeutic potential in P. gingivalis-related vascular diseases.