Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39418188

RESUMO

Electrolyte-gated transistors (EGTs) have significant potential for neuromorphic computing because they can control the number of ions by mimicking neurotransmitters. However, fast depolarization of the electric double layer (EDL) makes it difficult to achieve long-term plasticity (LTP). Additionally, most research utilizing organic ferroelectric materials has been focused on basic biological functions, and the impact on nonvolatile memory properties is still lacking. Herein, we present a polyvinylidene fluoride (PVDF)-based ion-gel synaptic device using PVDF and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) to implement LTP through the introduction of ferroelectric materials. The PVDF-based polymer slows the escape rate of TFSI anions from the electrolyte/channel layer through residual polarization. The fabricated synaptic devices successfully demonstrate LTP by controlling ion adsorption under the influence of PVDF-based polymers. Furthermore, it implements synaptic functions including paired pulse facilitation (PPF), high-pass filtering, and neurotransmitter control. To validate the potential of neuromorphic computing, we successfully achieved high recognition rates for artificial/convolutional neural network (A/CNN) simulations via sequential adsorption and desorption under ferroelectric polarization with long-term potentiation/depression (LTP/D). This study provides a rational ion adsorption strategy utilizing the ferroelectric polarization caused by the introduction of a PVDF-based polymer in the dielectric layer.

2.
Adv Sci (Weinh) ; 11(16): e2400304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408158

RESUMO

Interest has grown in services that consume a significant amount of energy, such as large language models (LLMs), and research is being conducted worldwide on synaptic devices for neuromorphic hardware. However, various complex processes are problematic for the implementation of synaptic properties. Here, synaptic characteristics are implemented through a novel method, namely side chain control of conjugated polymers. The developed devices exhibit the characteristics of the biological brain, especially spike-timing-dependent plasticity (STDP), high-pass filtering, and long-term potentiation/depression (LTP/D). Moreover, the fabricated synaptic devices show enhanced nonvolatile characteristics, such as long retention time (≈102 s), high ratio of Gmax/Gmin, high linearity, and reliable cyclic endurance (≈103 pulses). This study presents a new pathway for next-generation neuromorphic computing by modulating conjugated polymers with side chain control, thereby achieving high-performance synaptic properties.


Assuntos
Polímeros , Sinapses , Polímeros/química , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA