Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(7): 3329-3442, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36719999

RESUMO

The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.

2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836558

RESUMO

Ultrasound and optical imagers are used widely in a variety of biological and medical applications. In particular, multimodal implementations combining light and sound have been actively investigated to improve imaging quality. However, the integration of optical sensors with opaque ultrasound transducers suffers from low signal-to-noise ratios, high complexity, and bulky form factors, significantly limiting its applications. Here, we demonstrate a quadruple fusion imaging system using a spherically focused transparent ultrasound transducer that enables seamless integration of ultrasound imaging with photoacoustic imaging, optical coherence tomography, and fluorescence imaging. As a first application, we comprehensively monitored multiparametric responses to chemical and suture injuries in rats' eyes in vivo, such as corneal neovascularization, structural changes, cataracts, and inflammation. As a second application, we successfully performed multimodal imaging of tumors in vivo, visualizing melanomas without using labels and visualizing 4T1 mammary carcinomas using PEGylated gold nanorods. We strongly believe that the seamlessly integrated multimodal system can be used not only in ophthalmology and oncology but also in other healthcare applications with broad impact and interest.

3.
Angew Chem Int Ed Engl ; 62(22): e202302852, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36971018

RESUMO

Although α-CsPbI3 is regarded as an attractive optical luminophore, it is readily degraded to the optically inactive δ-phase under ambient conditions. Here, we present a simple approach to revive degraded ("optically sick") α-CsPbI3 through "medication" with thiol-containing ligands. The effect of different types of thiols is systematically studied through optical spectroscopy. The structural reconstruction of degraded α-CsPbI3 nanocrystals to cubic crystals in the presence of thiol-containing ligands is visualized through high-resolution transmission electron microscopy and supported by X-ray diffraction analysis. We found that 1-dodecanethiol (DSH) effectively revives degraded CsPbI3 and results in high immunity towards moisture and oxygen, hitherto unreported. DSH facilitates the passivation of surface defects and etching of degraded Cs4 PbI6 phase, thus reverting them back to the cubic CsPbI3 phase, leading to enhanced PL and environmental stability.

4.
Nat Mater ; 20(4): 533-540, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398123

RESUMO

Conductive and stretchable electrodes that can be printed directly on a stretchable substrate have drawn extensive attention for wearable electronics and electronic skins. Printable inks that contain liquid metal are strong candidates for these applications, but the insulating oxide skin that forms around the liquid metal particles limits their conductivity. This study reveals that hydrogen doping introduced by ultrasonication in the presence of aliphatic polymers makes the oxide skin highly conductive and deformable. X-ray photoelectron spectroscopy and atom probe tomography confirmed the hydrogen doping, and first-principles calculations were used to rationalize the obtained conductivity. The printed circuit lines show a metallic conductivity (25,000 S cm-1), excellent electromechanical decoupling at a 500% uniaxial stretching, mechanical resistance to scratches and long-term stability in wide ranges of temperature and humidity. The self-passivation of the printed lines allows the direct printing of three-dimensional circuit lines and double-layer planar coils that are used as stretchable inductive strain sensors.

5.
Nano Lett ; 21(13): 5819-5827, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34189918

RESUMO

Stretchable electronics have been spotlighted as promising next-generation electronics. In order to drive a specific unit device in an integrated stretchable device, the interconnection of the device should be placed in a desired position and addressed individually. In addition, practical stretchable interconnection requires reliable stretchability, high conductivity, optical transparency, high resolution, and fast and large-scale production. This study proposes an approach to meet these requirements. We print the single wavy polymer nanofibers (NFs) in a desired position and convert them into metal NF interconnections. The nanoscale diameter and the wavy cylindrical shape of the metal NFs are the main reasons for the reliable stretchability and the excellent transparency. Using the stretchable metal NFs and the stretchable organic semiconductor NFs, an array of all-stretchable transparent NF-field effect transistors (NF-FETs) is demonstrated. The highly integrated NF-FET array (10 FETs/mm2) shows uniform performance and good stability under repeated severe mechanical deformations.

6.
Nano Lett ; 21(22): 9772-9779, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766778

RESUMO

Metal thin films with a specific orientation play vital roles in electronics, catalysts, and epitaxial templates. Although oriented metal films have been produced in the recent years, ultrathin oriented metal films (<10 nm) have not been achieved owing to the interfacial instability of the ultrathin films during the thermal annealing process. This study investigates chemical conversion of randomly oriented multigrain Au ultrathin films into (111)-oriented Au ultrathin films. A novel chemical process, termed pseudoequilibrium of etching and selective grain growth, is presented for the chemical conversion by using a quaternary ammonium halide. The reaction variables (reaction time, reaction temperature, species of halide ions) for the chemical conversion process are systematically investigated. This study reveals the in-plane rotational degeneracy in the Au(111) thin film epitaxially grown on a Si(111) substrate. The chemical process can be applied to a broad range of thicknesses from 9 to 100 nm.

7.
Acc Chem Res ; 52(1): 63-72, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586291

RESUMO

As industrial needs for healthcare sensors, electronic skin, and flexible/stretchable displays increase, interest in stretchable materials is increasing as well. In recent years, the studies on stretchable materials have spread to various pivot components, such as electrodes, circuits, substrates, semiconductors, dielectric layers, membranes, and active nanocomposite films. The block copolymer (BC) elastomers have been playing considerable role in the development of stretchable materials. Since BCs are soft elastomers based on physical cross-links, they show differences in physical properties from normal elastomers formed with chemical cross-linking. BC elastomers does not require additional chemical cross-linking procedure, so they can be easily processed after dissolved in various solvents. Their viscoelasticity and thermoplasticity enable the BCs to become moldable and sticky. Although their unique physical properties may serve as disadvantages in some cases, they have been actively applied to create various stretchable electronic materials and their uses are expected to be enlarged more than ever. In this Account, we summarize recent successful applications of BCs for the stretchable electronic devices and discuss the possibility of further uses and the challenges to be addressed for practical uses. Studies on BC-based stretchable materials have focused initially on the fabrication process of stretchable conductors; mixing conductive fillers physically with BCs, infiltrating BCs in a conductive filler layer, and converting metal precursors into metal nanoparticles inside BCs. When conductive fillers with high aspect ratios, such as nanowires or nanosheets are used, the fillers can be infiltrated by the BCs after deposited. Since the contacts between the fillers are maintained during the infiltration process, even thin composite films possess high conductivity and stretchability. The metal precursor solution printing is suggested as a promising approach because it is compatible with traditional printing techniques without clogging the nozzles and allows high filler loading efficiency. When using a BC as a substrate, it is advisable to use a BC/PDMS double layer because of viscoelastic and thermoplastic properties of BCs. If BC/PDMS double layer is used with much thicker PDMS layer instead of viscoelastic BC alone, the double layer substrate can show a perfect elastomeric behavior, and the advantages of the BC substrate are preserved. Additionally, the use of conventional manufacturing techniques is important for commercialization of the stretchable devices. BC substrates having preformed microfibril network on their surfaces facilitate the fabrication of high-resolution circuitry by directly depositing metals through a mask on the substrate. Recent successes of fabricating stretchable organic transistors were obtained based on in situ phase separation of polymer semiconductors to form nanofibril bundles on the surface of a BC substrate. They have led to the achievement of high resolution transistor array printed in large area. BCs are expected to expand their applicability, including stretchable batteries, since they make it feasible to fabricate various hybrid nanocomposites, pore size-controlled membranes, and microstructured surfaces. However, it is necessary to secure long-term stability under heat, solvent, and UV; in addition, there is a need for the synthesis of functional BCs for use in stretchable implanted biomedical devices.

8.
Acc Chem Res ; 52(12): 3475-3487, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31793763

RESUMO

Colloidal particles with a spherical shape and diameters in the range of 0.01-1 µm have been a subject of extensive research, with applications in areas such as photonics, electronics, catalysis, drug delivery, and medicine. For most of these applications, it is of critical importance to achieve monodispersity for the size while expanding the diversity in terms of structure and composition. The uniformity in size allows one to establish rigorous correlations between this parameter and the physicochemical properties of the colloidal particles while ensuring experimental repeatability and measurement accuracy. On the other hand, the diversity in structure and composition offers additional handles for tailoring the properties. By switching from the conventional plain, solid structure to a core-shell, hollow, porous, or Janus structure, it offers immediate advantages and creates new opportunities, especially in the context of self-assembly, encapsulation, and controlled release. As for composition, monodispersed colloidal spheres were traditionally limited to amorphous materials such as polystyrene and silica. For metals and semiconducting materials, which are more valuable to applications in photonics, electronics, and catalysis, they tend to crystallize and thus grow anisotropically into nonspherical shapes, especially when their sizes pass 0.1 µm. Taken together, it is no wonder why chemical synthesis of monodispersed colloidal spheres has been a constant theme of research in areas such as colloidal science, materials chemistry, materials science, and soft matter. In this Account, we summarize our efforts over the past two decades in developing solution-phase methods for the facile synthesis of colloidal spheres that are uniform in size, together with a broad range of compositions (including metals and semiconductors) and structures (e.g., solid, core-shell, hollow, porous, and Janus, among others). We start with the synthesis of monodispersed colloidal spheres made of semiconductors, metals with low melting points, and precious metals. Through chemical reactions, these colloidal spheres can be transformed into core-shell or hollow structures with new compositions and properties. Next, we discuss the synthesis of colloidal spheres with a Janus structure while taking a pseudospherical shape. Specifically, metal-polymer hybrid particles composed of one metal nanoparticle partially embedded in the surface of a polymer sphere can be produced through precipitation polymerization in the presence of metal seed. With these Janus particles serving as templates, other types of Janus structures such as hollow spheres with a single hole in the surface can be obtained via site-selected deposition. Alternatively, such hollow spheres can be fabricated through a physical transformation process that involves swelling of polymer spheres, followed by freeze-drying. All these synthesis and transformation processes are solution-based, offering flexibility and potential for large-scale production. At the end, we highlight some of the applications enabled by these colloidal spheres, including fabrication of photonic devices, encapsulation, and controlled release for nanomedicine.


Assuntos
Técnicas de Química Sintética/métodos , Coloides/química
9.
Nanotechnology ; 30(31): 315502, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30893673

RESUMO

In the last decade, extensive studies have been conducted to realize the functions of human skin based on stretchable electronics. An artificial skin, recognizing complex mechanical stimulation including pressure, strain and shear, and composed of transparent material, is an essential goal but has hardly been achieved. We fabricated a transparent integrated sensor system that can sense the strain direction and normal pressure of applied mechanical stimulation. Each sensor is composed of micropatterned Ag nanowire, forming a composite stretchable conductor with a block copolymer elastomer. The micropatterning and transfer process using thermoplastic elastomer facilitates the transparent conductor to show high transmittance with low sheet resistance at the same time. The designed transparent strain sensor responds linearly to strain, but does not respond to the orthogonal direction, which enables it to have strain-directionality. The applied mechanical signal, comprising normal force and directional strain, can be interpreted through the electrical signal observed from integrated sensors.

10.
Nanomedicine ; 13(5): 1597-1605, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28285158

RESUMO

Bi2Se3 nanoparticles (NPs) have attracted wide interests in biological and medical applications. Layer-like Bi2Se3 with high active surface area is promising for free radical scavenging. Here, we extended the medical applications of Bi2Se3 NPs further to in vivo protection against ionizing radiation based on their superior antioxidant activities and electrocatalytic properties. It was found that Bi2Se3 NPs can significantly increase the surviving fraction of mice after exposure of high-energy radiation of gamma ray. Additionally, the Bi2Se3 NPs can help to recover radiation-lowered red blood cell counts, white blood cell counts and platelet levels. Further investigations revealed that Bi2Se3 NPs behaved as functional free radical scavengers and significantly decreased the level of methylenedioxyamphetamine. In vivo toxicity studies showed that Bi2Se3 NPs did not cause significant side effects in panels of blood chemistry, clinical biochemistry and pathology.


Assuntos
Sequestradores de Radicais Livres , Nanopartículas , Radiação Ionizante , Protetores contra Radiação , Animais , Catálise , Raios gama , Camundongos
11.
Anal Chem ; 88(2): 1078-82, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26717968

RESUMO

A novel method (i.e., continuous magnetic cell separation in a microfluidic channel) is demonstrated to be capable of inducing multifractionation of mixed cell suspensions into multiple outlet fractions. Here, multicomponent cell separation is performed with three different distinguishable magnetic nanoclusters (MnFe2O4, Fe3O4, and CoFe2O4), which are tagged on A431 cells. Because of their mass magnetizations, which can be ideally altered by doping with magnetic atom compositions (Mn, Fe, and Co), the trajectories of cells with each magnetic nanocluster in a flow are shown to be distinct when dragged under the same external magnetic field; the rest of the magnetic characteristics of the nanoclusters are identically fixed. This proof of concept study, which utilizes the magnetization-controlled nanoclusters (NCs), suggests that precise and effective multifractionation is achievable with high-throughput and systematic accuracy for dynamic cell separation.


Assuntos
Separação Celular/instrumentação , Separação Celular/métodos , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas , Elementos de Transição/química , Linhagem Celular Tumoral , Humanos , Fenômenos Magnéticos , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Propriedades de Superfície
12.
Acc Chem Res ; 47(10): 2887-93, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25133523

RESUMO

The ability to assemble nanoscale functional building blocks is a useful and modular way for scientists to design valuable materials with specific physical and chemical properties. Chemists expect multicomponent, heterostructured nanocrystals to show unique electrical, thermal, and optical properties not seen in homogeneous, single-phase nanocrystals. Although researchers have made remarkable advances in heterogeneous nucleation and growth, design of synthetic conditions for obtaining nanocrystals with a target composition and shape is still a big challenge. There are several outstanding issues that chemists need to address before they can successfully carry out the design-based synthesis of multicomponent nanocrystals. For instance, small changes in the reaction parameters, such as the precursor, solvent, surfactant, reducing agent, and the reaction temperature, often result in changes in the structure and chemical composition of the final product. Although scientists do not fully understand the mechanisms underlying the nucleation and growth processes involved in the synthesis of these multicomponent nanocrystals, recent progress in understanding of the thermodynamic and kinetic factors have improved our control over their final structure and chemical composition. In this Account, we summarize our recent advances in understanding of the nucleation and growth mechanisms involved in the solution-based synthesis of multicomponent nanocrystals. We also discuss the various challenges encountered in their synthesis, emphasizing what still needs special consideration. We first discuss the three different nucleation paths from a thermodynamics perspective: amorphous nucleation, crystalline nucleation, and two-step nucleation. Amorphous nucleation and two-step nucleation involve the generation of nonstoichiometric nuclei. We initiate this process mainly by introducing an imbalance in the concentrations of the reduced elements. When the nonstoichiometric nuclei grow, we can add secondary elements to the growing nonstoichiometric nuclei. This leads to either the physical deposition or atomic mixture formation through the diffusion and rearrangement of constituents. The processes of mixture formation and the physical deposition of the secondary constituent element also compete and determine the shape and chemical composition of the final product. If the free energy change by mixture formation is positive (ΔGAB ≥ 0), physical deposition takes place predominantly, and the spreading coefficient (S) determines the structure of the nanocrystals. However, when mixture formation is highly spontaneous (ΔGAB < -ξ), the chemical composition of the final product is usually stoichiometric, and its shape then depends on the size of the primary nanocrystals. When the mixture formation and physical deposition are in competition (-ξ ≤ ΔGAB < 0), as commonly seen for many nanoalloy systems, both the chemical composition and the structure are determined by the size of the primary nanocrystals as well as the degree of mixture formation at the interface of the constituent components. Finally, we discuss the challenges and caveats that one needs to take into account when synthesizing multicomponent nanocrystals.

13.
Chemphyschem ; 16(6): 1155-63, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25641620

RESUMO

With the recent progress made in wearable electronics, devices now require high flexibility and stretchability up to large strain levels (typically larger than 30 % strain). Wearable strain sensors or deformable strain sensors have been gaining increasing research interest because of the rapid development of electronic skins and robotics and because of their biomedical applications. Conventional brittle strain sensors made of metals and piezoresistors are not applicable for such stretchable sensors. This Review summarizes recent advances in stretchable sensors and focuses on material aspects for high stretchability and sensitivity. It begins with a brief introduction to the Wheatstone bridge circuit of conventional resistive strain sensors. Then, studies on the manipulation of materials are reviewed, including waved structural approaches for making metals and semiconductors stretchable, the use of liquid metals, and conductive filler/elastomer composites by using percolation among the fillers. For capacitive strain sensors, the constant conductivity of the electrode is a key factor in obtaining reliable sensors. Possible approaches to developing capacitive strain sensors are presented. This Review concludes with a discussion on the major challenges and perspectives related to stretchable strain sensors.

14.
Macromol Rapid Commun ; 35(5): 560-5, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24497070

RESUMO

This study proposes a method to coat thin films of non-volatile solvents on substrates. A small amount of crystalline polymer dissolved in solvents forms a network of crystalline fibrils during the coating process. The network suppresses dewetting of the solvent liquid and helps the liquid film sustaining on the substrate. This strategy can be used in soft lithography to generate micropatterns of diverse materials without having a residual layer. This process does not request etching for achieving residual layer-free micropatterns, which has been a long challenge in soft lithography. As examples, we demonstrate micropatterns of polymer hydrogels and metal oxides (ZnO, In2O3).


Assuntos
Microtecnologia/métodos , Solventes/química , Cristalização , Fluoresceína-5-Isotiocianato/química , Índio/química , Microscopia de Fluorescência , Polietilenoglicóis/química
15.
Macromol Rapid Commun ; 35(6): 655-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24470402

RESUMO

This study demonstrates the growth of long triisopropylsilyethynyl pentacene (TIPS-PEN) nanofibrils in a thin film of a crystalline polymer, poly(ε-caprolactone) (PCL). During spin-coating, TIPS-PEN molecules are locally extracted around the PCL grain boundaries and they crystallize into [010] direction forming long nanofibrils. Molecular weight of PCL and weight fraction (α) of TIPS-PEN in PCL matrix are key factors to the growth of nanofibrils. Long high-quality TIPS-PEN nanofibrils are obtained with high-molecular-weight PCL and at the α values in the range of 0.03-0.1. The long nanofibrils are used as an active layer in a field-effect organic transistor.


Assuntos
Nanofibras/química , Naftacenos/química , Polímeros/química , Peso Molecular , Polímeros/síntese química
16.
Angew Chem Int Ed Engl ; 53(15): 3780-95, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24470287

RESUMO

The nebulous term phase-change material (PCM) simply refers to any substance that has a large heat of fusion and a sharp melting point. PCMs have been used for many years in commercial applications, mainly for heat management purposes. However, these fascinating materials have recently been rediscovered and applied to a broad range of technologies, such as smart drug delivery, information storage, barcoding, and detection. With the hope of kindling interest in this incredibly versatile range of materials, this Review presents an array of aspects related to the compositions, preparations, and emerging applications of PCMs.


Assuntos
Desenho de Equipamento/instrumentação , Tecnologia/instrumentação , Sistemas de Liberação de Medicamentos , Tecnologia/métodos
17.
Biomaterials ; 309: 122579, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38670033

RESUMO

Owing to air pollution and the pandemic outbreak, the need for quantitative pulmonary monitoring has greatly increased. The COVID-19 outbreak has aroused attention for comfortable wireless monitoring of respiratory profiles and more real-time diagnosis of respiratory diseases. Although respiration sensors have been investigated extensively with single-pixel sensors, 2D respiration profiling with a pixelated array sensor has not been demonstrated for both exhaling and inhaling. Since the pixelated array sensor allowed for simultaneous profiling of the nasal breathing and oral breathing, it provides essential respiratory information such as breathing patterns, respiration habit, breathing disorders. In this study, we introduced an air-permeable, stretchable, and a pixelated pressure sensor that can be integrated into a commercial face mask. The mask sensor showed a strain-independent pressure-sensing performance, providing 2D pressure profiles for exhalation and inhalation. Real-time 2D respiration profiles could monitor various respiratory behaviors, such as oral/nasal breathing, clogged nose, out-of-breath, and coughing. Furthermore, they could detect respiratory diseases, such as rhinitis, sleep apnea, and pneumonia. The 2D respiratory profiling mask sensor is expected to be employed for remote respiration monitoring and timely patient treatment.


Assuntos
COVID-19 , Máscaras , Respiração , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Tecnologia sem Fio/instrumentação , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Desenho de Equipamento
18.
Adv Mater ; 36(15): e2310282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190458

RESUMO

Acquisition of defect-free transition metal dichalcogenides (TMDs) channels with clean heterojunctions is a critical issue in the production of TMD-based functional electronic devices. Conventional approaches have transferred TMD onto a target substrate, and then apply the typical device fabrication processes. Unfortunately, those processes cause physical and chemical defects in the TMD channels. Here, a novel synthetic process of TMD thin films, named confined interfacial chalcogenization (CIC) is proposed. In the proposed synthesis, a uniform TMDlayer is created at the Au/transition metal (TM) interface by diffusion of chalcogen through the upper Au layer and the reaction of chalcogen with the underlying TM. CIC allows for ultraclean heterojunctions with the metals, synthesis of various homo- and hetero-structured TMDs, and in situ TMD channel formation in the last stage of device fabrication. The mechanism of TMD growth is revealed by the TM-accelerated chalcogen diffusion, epitaxial growth of TMD on Au(111). We demonstrated a wafer-scale TMD-based vertical memristors which exhibit excellent statistical concordance in device performance enabled by the ultraclean heterojunctions and superior uniformity in thickness. CIC proposed in this study represents a breakthrough in in TMD-based electronic device fabrication and marking a substantial step toward practical next-generation integrated electronics.

19.
Angew Chem Int Ed Engl ; 52(40): 10468-71, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23959631

RESUMO

Keep your wine chilled! Microscale polystyrene (PS) bottles are loaded with dye molecules and then corked with a phase-change material (PCM). When the temperature is raised beyond its melting point, the PCM quickly melts and triggers an instant release of the encapsulated dye. The release profiles can be manipulated by using a binary mixture of PCMs with different melting points.


Assuntos
Preparações de Ação Retardada/química , Polímeros/química , Dimetilpolisiloxanos/química , Desenho de Equipamento , Transição de Fase , Poliestirenos/química , Polivinil/química , Temperatura
20.
Adv Mater ; 35(52): e2306795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689978

RESUMO

Soft ionic sensors have emerged as a promising device form to accommodate various future electronic applications. One of the hurdles in ionic sensors is that the sensing signals by mechanical deformation and other stimuli are mixed up. Although the performance of the ionic sensors is highly dependent on the structure of electrodes, systematic investigation of purposive electrode design has been rarely explored. This study proposes a simple strategy for designing stretchable composite electrodes which make the ionic sensor strain-negative, strain-neutral, and strain-positive. This study reveals that such strain-responses can be obtained by adjusting the surface coverage of the electrically-effective conductive fillers. On the basis of the concept, deposition of a Au film on an elastomer composite and crack formation of the Au film are presented for the practical fabrication of a highly reproducible strain-neutral ionic sensor. A completely strain-independent temperature sensor is demonstrated by using the Au crack-based ionic sensor. In addition, this study demonstrates a two-terminal shear sensor capable of recognizing shear directions by combining the strain-positive and strain-negative electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA