Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2211823120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827259

RESUMO

There are several hundred million protein sequences, but the relationships among them are not fully available from existing homolog detection methods. There is an essential need for an improved method to push homolog detection to lower levels of sequence identity. The method used here relies on a language model to represent proteins numerically in a matrix (an embedding) and uses discrete cosine transforms to compress the data to extract the most essential part, significantly reducing the data size. This PRotein Ortholog Search Tool (PROST) is significantly faster with linear runtimes, and most importantly, computes the distances between pairs of protein sequences to yield homologs at significantly lower levels of sequence identity than previously. The extent of allosteric effects in proteins points out the importance of global aspects of structure and sequence. PROST excels at global homology detection but not at detecting local homologs. Results are validated by strong similarities between the corresponding pairs of structures. The number of remote homologs detected increased significantly and pushes the effective sequence matches more deeply into the twilight zone. Human protein sequences presently having no assigned function now find significant numbers of putative homologs for 93% of cases and structurally verified assigned functions for 76.4% of these cases. The data compression enables massive searches for homologs with short search times while yielding significant gains in the numbers of remote homologs detected. The method is sufficiently efficient to permit whole-genome/proteome comparisons. The PROST web server is accessible at https://mesihk.github.io/prost.


Assuntos
Compressão de Dados , Proteoma , Humanos , Sequência de Aminoácidos , Ferramenta de Busca , Genoma , Bases de Dados de Proteínas
2.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37115636

RESUMO

MOTIVATION: Allostery enables changes to the dynamic behavior of a protein at distant positions induced by binding. Here, we present APOP, a new allosteric pocket prediction method, which perturbs the pockets formed in the structure by stiffening pairwise interactions in the elastic network across the pocket, to emulate ligand binding. Ranking the pockets based on the shifts in the global mode frequencies, as well as their mean local hydrophobicities, leads to high prediction success when tested on a dataset of allosteric proteins, composed of both monomers and multimeric assemblages. RESULTS: Out of the 104 test cases, APOP predicts known allosteric pockets for 92 within the top 3 rank out of multiple pockets available in the protein. In addition, we demonstrate that APOP can also find new alternative allosteric pockets in proteins. Particularly interesting findings are the discovery of previously overlooked large pockets located in the centers of many protein biological assemblages; binding of ligands at these sites would likely be particularly effective in changing the protein's global dynamics. AVAILABILITY AND IMPLEMENTATION: APOP is freely available as an open-source code (https://github.com/Ambuj-UF/APOP) and as a web server at https://apop.bb.iastate.edu/.


Assuntos
Proteínas , Software , Proteínas/química , Ligantes , Ligação Proteica , Sítios de Ligação , Conformação Proteica , Sítio Alostérico
3.
Biophys J ; 122(15): 3069-3077, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345249

RESUMO

Cadherin intermolecular interactions are critical for cell-cell adhesion and play essential roles in tissue formation and the maintenance of tissue structures. In this study, we focus on E-cadherin, a classical cadherin that connects epithelial cells, to understand how they interact in cis and trans conformations when attached to the same cell or opposing cells. We employ coevolutionary sequence analysis and molecular dynamics simulations to confirm previously known interaction sites as well as to identify new interaction sites. The sequence coevolutionary results yield a surprising result indicating that there are no strongly favored intermolecular interaction sites, which is unusual and suggests that many interaction sites may be possible, with none being strongly preferred over others. By using molecular dynamics, we test the persistence of these interactions and how they facilitate adhesion. We build several types of cadherin assemblages, with different numbers and combinations of cis and trans interfaces to understand how these conformations act to facilitate adhesion. Our results suggest that, in addition to the established interaction sites on the EC1 and EC2 domains, an additional plausible cis interface at the EC3-EC5 domain exists. Furthermore, we identify specific mutations at cis/trans binding sites that impair adhesion within E-cadherin assemblages.


Assuntos
Caderinas , Sítios de Ligação , Caderinas/química , Caderinas/metabolismo , Adesão Celular , Mutação , Ligação Proteica , Animais , Camundongos
4.
Bioinformatics ; 38(10): 2727-2733, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561187

RESUMO

SUMMARY: A new dynamic community identifier (DCI) is presented that relies upon protein residue dynamic cross-correlations generated by Gaussian elastic network models to identify those residue clusters exhibiting motions within a protein. A number of examples of communities are shown for diverse proteins, including GPCRs. It is a tool that can immediately simplify and clarify the most essential functional moving parts of any given protein. Proteins usually can be subdivided into groups of residues that move as communities. These are usually densely packed local sub-structures, but in some cases can be physically distant residues identified to be within the same community. The set of these communities for each protein are the moving parts. The ways in which these are organized overall can aid in understanding many aspects of functional dynamics and allostery. DCI enables a more direct understanding of functions including enzyme activity, action across membranes and changes in the community structure from mutations or ligand binding. The DCI server is freely available on a web site (https://dci.bb.iastate.edu/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas de Grãos , Movimento (Física) , Distribuição Normal , Conformação Proteica , Proteínas/química
5.
Biophys J ; 120(22): 4955-4965, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34687719

RESUMO

Hinge motions are essential for many protein functions, and their dynamics are important to understand underlying biological mechanisms. The ways that these motions are represented by various computational methods differ significantly. By focusing on a specific class of motion, we have developed a new hinge-domain anisotropic network model (hdANM) that is based on the prior identification of flexible hinges and rigid domains in the protein structure and the subsequent generation of global hinge motions. This yields a set of motions in which the relative translations and rotations of the rigid domains are modulated and controlled by the deformation of the flexible hinges, leading to a more restricted, specific view of these motions. hdANM is the first model, to our knowledge, that combines information about protein hinges and domains to model the characteristic hinge motions of a protein. The motions predicted with this new elastic network model provide important conceptual advantages for understanding the underlying biological mechanisms. As a matter of fact, the generated hinge movements are found to resemble the expected mechanisms required for the biological functions of diverse proteins. Another advantage of this model is that the domain-level coarse graining makes it significantly more computationally efficient, enabling the generation of hinge motions within even the largest molecular assemblies, such as those from cryo-electron microscopy. hdANM is also comprehensive as it can perform in the same way as the well-known protein dynamics models (anisotropic network model, rotations-translations of blocks, and nonlinear rigid block normal mode analysis), depending on the definition of flexible and rigid parts in the protein structure and on whether the motions are extrapolated in a linear or nonlinear fashion. Furthermore, our results indicate that hdANM produces more realistic motions as compared to the anisotropic network model. hdANM is an open-source software, freely available, and hosted on a user-friendly website.


Assuntos
Algoritmos , Proteínas , Simulação por Computador , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
6.
Plant J ; 102(6): 1107-1126, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32168387

RESUMO

Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO2 in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO2 concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (Ci ) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organism Chlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active Ci uptake systems. Fundamental to eukaryotic Ci uptake systems are Ci transporters/channels located in membranes of various cell compartments, which together facilitate the movement of Ci from the environment into the chloroplast, where primary CO2 assimilation occurs. Two putative plasma membrane Ci transporters, HLA3 and LCI1, are reportedly involved in active Ci uptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO3- transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full-length LCI1 membrane protein to reveal LCI1 structural characteristics, as well as in vivo physiological studies in an LCI1 loss-of-function mutant to reveal the Ci species preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO2 uptake and that LCI1 likely functions as a plasma membrane CO2 channel, possibly a gated channel.


Assuntos
Proteínas de Algas/metabolismo , Dióxido de Carbono/metabolismo , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Algas/química , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína
7.
Proteins ; 89(6): 671-682, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33469973

RESUMO

Protein sequence matching presently fails to identify many structures that are highly similar, even when they are known to have the same function. The high packing densities in globular proteins lead to interdependent substitutions, which have not previously been considered for amino acid similarities. At present, sequence matching compares sequences based only upon the similarities of single amino acids, ignoring the fact that in densely packed protein, there are additional conservative substitutions representing exchanges between two interacting amino acids, such as a small-large pair changing to a large-small pair substitutions that are not individually so conservative. Here we show that including information for such pairs of substitutions yields improved sequence matches, and that these yield significant gains in the agreements between sequence alignments and structure matches of the same protein pair. The result shows sequence segments matched where structure segments are aligned. There are gains for all 2002 collected cases where the sequence alignments that were not previously congruent with the structure matches. Our results also demonstrate a significant gain in detecting homology for "twilight zone" protein sequences. The amino acid substitution metrics derived have many other potential applications, for annotations, protein design, mutagenesis design, and empirical potential derivation.


Assuntos
Algoritmos , Substituição de Aminoácidos , Aminoácidos/química , Proteínas/química , Sequência de Aminoácidos , Aminoácidos/metabolismo , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Humanos , Modelos Moleculares , Engenharia de Proteínas/métodos , Proteínas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Plant Cell Physiol ; 62(12): 1890-1901, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34265062

RESUMO

Glycosyltransferases (GTs) are a large family of enzymes that add sugars to a broad range of acceptor substrates, including polysaccharides, proteins and lipids, by utilizing a wide variety of donor substrates in the form of activated sugars. Individual GTs have generally been considered to exhibit a high level of substrate specificity, but this has not been thoroughly investigated across the extremely large set of GTs. Here we investigate xyloglucan xylosyltransferase 1 (XXT1), a GT involved in the synthesis of the plant cell wall polysaccharide, xyloglucan. Xyloglucan has a glucan backbone, with initial side chain substitutions exclusively composed of xylose from uridine diphosphate (UDP)-xylose. While this conserved substitution pattern suggests a high substrate specificity for XXT1, our in vitro kinetic studies elucidate a more complex set of behavior. Kinetic studies demonstrate comparable kcat values for reactions with UDP-xylose and UDP-glucose, while reactions with UDP-arabinose and UDP-galactose are over 10-fold slower. Using kcat/KM as a measure of efficiency, UDP-xylose is 8-fold more efficient as a substrate than the next best alternative, UDP-glucose. To the best of our knowledge, we are the first to demonstrate that not all plant XXTs are highly substrate specific and some do show significant promiscuity in their in vitro reactions. Kinetic parameters alone likely do not explain the high substrate selectivity in planta, suggesting that there are additional control mechanisms operating during polysaccharide biosynthesis. Improved understanding of substrate specificity of the GTs will aid in protein engineering, development of diagnostic tools, and understanding of biological systems.


Assuntos
Glucanos/biossíntese , Pentosiltransferases/genética , Proteínas de Plantas/genética , Plantas/enzimologia , Glucanos/genética , Cinética , Pentosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Especificidade por Substrato
9.
J Chem Inf Model ; 61(11): 5673-5681, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34714659

RESUMO

Drug extrusion through molecular efflux pumps is an important mechanism for the survival of many pathogenic bacteria by removing drugs, providing multidrug resistance (MDR). Understanding molecular mechanisms for drug extrusion in multidrug efflux pumps is important for the development of new antiresistance drugs. The AbgT family of transporters involved in the folic acid biosynthesis pathway represents one such important efflux pump system. In addition to the transport of the folic acid precursor p-amino benzoic acid (PABA), members of this family are involved in the efflux of several sulfa drugs, conferring drug resistance to the bacteria. With the availability of structures for two members of this family (YdaH and MtrF), we investigate molecular pathways for transport of PABA and a sulfa drug (sulfamethazine) particularly for the YdaH transporter using steered molecular dynamics. Our analyses reveal the probable ligand migration pathways through the transporter, which also identifies key residues along the transport pathway. In addition, simulations using both PABA and sulfamethazine show how the protein is able to transport ligands of different shapes and sizes out of the pathogen. Our observations confirm previously reported functional residues for transport along the pathways by which YdaH transporters achieve antibiotic resistance to shuttle drugs out of the cells.


Assuntos
Proteínas de Membrana Transportadoras , Preparações Farmacêuticas , Antibacterianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Resistência a Medicamentos
11.
Proteins ; 88(11): 1482-1492, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32548853

RESUMO

Proteins are the active players in performing essential molecular activities throughout biology, and their dynamics has been broadly demonstrated to relate to their mechanisms. The intrinsic fluctuations have often been used to represent their dynamics and then compared to the experimental B-factors. However, proteins do not move in a vacuum and their motions are modulated by solvent that can impose forces on the structure. In this paper, we introduce a new structural concept, which has been called the structural compliance, for the evaluation of the global and local deformability of the protein structure in response to intramolecular and solvent forces. Based on the application of pairwise pulling forces to a protein elastic network, this structural quantity has been computed and sometimes is even found to yield an improved correlation with the experimental B-factors, meaning that it may serve as a better metric for protein flexibility. The inverse of structural compliance, namely the structural stiffness, has also been defined, which shows a clear anticorrelation with the experimental data. Although the present applications are made to proteins, this approach can also be applied to other biomolecular structures such as RNA. This present study considers only elastic network models, but the approach could be applied further to conventional atomic molecular dynamics. Compliance is found to have a slightly better agreement with the experimental B-factors, perhaps reflecting its bias toward the effects of local perturbations, in contrast to mean square fluctuations. The code for calculating protein compliance and stiffness is freely accessible at https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance.


Assuntos
Complemento C8/química , Proteínas Fúngicas/química , Lectinas/química , Redes Neurais de Computação , Software , Agaricales/química , Fenômenos Biomecânicos , Elasticidade , Humanos , Internet , Simulação de Dinâmica Molecular
12.
Proc Natl Acad Sci U S A ; 114(11): 2928-2933, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28265078

RESUMO

Evaluating protein structures requires reliable free energies with good estimates of both potential energies and entropies. Although there are many demonstrated successes from using knowledge-based potential energies, computing entropies of proteins has lagged far behind. Here we take an entirely different approach and evaluate knowledge-based conformational entropies of proteins based on the observed frequencies of contact changes between amino acids in a set of 167 diverse proteins, each of which has two alternative structures. The results show that charged and polar interactions break more often than hydrophobic pairs. This pattern correlates strongly with the average solvent exposure of amino acids in globular proteins, as well as with polarity indices and the sizes of the amino acids. Knowledge-based entropies are derived by using the inverse Boltzmann relationship, in a manner analogous to the way that knowledge-based potentials have been extracted. Including these new knowledge-based entropies almost doubles the performance of knowledge-based potentials in selecting the native protein structures from decoy sets. Beyond the overall energy-entropy compensation, a similar compensation is seen for individual pairs of interacting amino acids. The entropies in this report have immediate applications for 3D structure prediction, protein model assessment, and protein engineering and design.


Assuntos
Entropia , Conformação Proteica , Proteínas/química , Aminoácidos/química , Interações Hidrofóbicas e Hidrofílicas , Dobramento de Proteína , Solventes/química
13.
Proteins ; 87(10): 850-868, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31141211

RESUMO

Binding sites in proteins can be either specifically functional binding sites (active sites) that bind specific substrates with high affinity or regulatory binding sites (allosteric sites), that modulate the activity of functional binding sites through effector molecules. Owing to their significance in determining protein function, the identification of protein functional and regulatory binding sites is widely acknowledged as an important biological problem. In this work, we present a novel binding site prediction method, Active and Regulatory site Prediction (AR-Pred), which supplements protein geometry, evolutionary, and physicochemical features with information about protein dynamics to predict putative active and allosteric site residues. As the intrinsic dynamics of globular proteins plays an essential role in controlling binding events, we find it to be an important feature for the identification of protein binding sites. We train and validate our predictive models on multiple balanced training and validation sets with random forest machine learning and obtain an ensemble of discrete models for each prediction type. Our models for active site prediction yield a median area under the curve (AUC) of 91% and Matthews correlation coefficient (MCC) of 0.68, whereas the less well-defined allosteric sites are predicted at a lower level with a median AUC of 80% and MCC of 0.48. When tested on an independent set of proteins, our models for active site prediction show comparable performance to two existing methods and gains compared to two others, while the allosteric site models show gains when tested against three existing prediction methods. AR-Pred is available as a free downloadable package at https://github.com/sambitmishra0628/AR-PRED_source.


Assuntos
Inteligência Artificial , Evolução Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Algoritmos , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Aprendizado de Máquina , Ligação Proteica
14.
Metab Eng ; 55: 44-58, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220664

RESUMO

Terpene synthases are capable of mediating complex reactions, but fundamentally simply catalyze lysis of allylic diphosphate esters with subsequent deprotonation. Even with the initially generated tertiary carbocation this offers a variety of product outcomes, and deprotonation further can be preceded by the addition of water. This is particularly evident with labdane-related diterpenes (LRDs) where such lysis follows bicyclization catalyzed by class II diterpene cyclases (DTCs) that generates preceding structural variation. Previous investigation revealed that two diterpene synthases (DTSs), one bacterial and the other plant-derived, exhibit extreme substrate promiscuity, but yet still typically produce exo-ene or tertiary alcohol LRD derivatives, respectively (i.e., demonstrating high catalytic specificity), enabling rational combinatorial biosynthesis. Here two DTSs that produce either cis or trans endo-ene LRD derivatives, also plant and bacterial (respectively), were examined for their potential analogous utility. Only the bacterial trans-endo-ene forming DTS was found to exhibit significant substrate promiscuity (with moderate catalytic specificity). This further led to investigation of the basis for substrate promiscuity, which was found to be more closely correlated with phylogenetic origin than reaction complexity. Specifically, bacterial DTSs exhibited significantly more substrate promiscuity than those from plants, presumably reflecting their distinct evolutionary context. In particular, plants typically have heavily elaborated LRD metabolism, in contrast to the rarity of such natural products in bacteria, and the lack of potential substrates presumably alleviates selective pressure against such promiscuity. Regardless of such speculation, this work provides novel biosynthetic access to almost 19 LRDs, demonstrating the power of the combinatorial approach taken here.


Assuntos
Alquil e Aril Transferases/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Diterpenos/síntese química , Proteínas de Plantas/química , Plantas/enzimologia , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Proteínas de Plantas/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(39): E5711-20, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621473

RESUMO

Classical cadherin cell-cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces.


Assuntos
Caderinas/química , Caderinas/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Análise de Componente Principal , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Termodinâmica
16.
Entropy (Basel) ; 21(8)2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32336912

RESUMO

Entropy should directly reflect the extent of disorder in proteins. By clustering structurally related proteins and studying the multiple-sequence-alignment of the sequences of these clusters, we were able to link between sequence, structure, and disorder information. We introduced several parameters as measures of fluctuations at a given MSA site and used these as representative of the sequence and structure entropy at that site. In general, we found a tendency for negative correlations between disorder and structure, and significant positive correlations between disorder and the fluctuations in the system. We also found evidence for residue-type conservation for those residues proximate to potentially disordered sites. Mutation at the disorder site itself appear to be allowed. In addition, we found positive correlation for disorder and accessible surface area, validating that disordered residues occur in exposed regions of proteins. Finally, we also found that fluctuations in the dihedral angles at the original mutated residue and disorder are positively correlated while dihedral angle fluctuations in spatially proximal residues are negatively correlated with disorder. Our results seem to indicate permissible variability in the disordered site, but greater rigidity in the parts of the protein with which the disordered site interacts. This is another indication that disordered residues are involved in protein function.

17.
Biophys J ; 112(8): 1561-1570, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445748

RESUMO

Protein functional mechanisms usually require conformational changes, and often there are known structures for the different conformational states. However, usually neither the origin of the driving force nor the underlying pathways for these conformational transitions is known. Exothermic chemical reactions may be an important source of forces that drive conformational changes. Here we investigate this type of force originating from ATP hydrolysis in the chaperonin GroEL, by applying forces originating from the chemical reaction. Specifically, we apply directed forces to drive the GroEL conformational changes and learn that there is a highly specific direction for applied forces to drive the closed form to the open form. For this purpose, we utilize coarse-grained elastic network models. Principal component analysis on 38 GroEL experimental structures yields the most important motions, and these are used in structural interpolation for the construction of a coarse-grained free energy landscape. In addition, we investigate a more random application of forces with a Monte Carlo method and demonstrate pathways for the closed-open conformational transition in both directions by computing trajectories that are shown upon the free energy landscape. Initial root mean square deviation (RMSD) between the open and closed forms of the subunit is 14.7 Å and final forms from our simulations reach an average RMSD of 3.6 Å from the target forms, closely matching the level of resolution of the coarse-grained model.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Chaperonina 60/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Chaperonina 60/metabolismo , Simulação por Computador , Escherichia coli , Hidrólise , Modelos Químicos , Modelos Moleculares , Método de Monte Carlo , Paracoccus denitrificans , Análise de Componente Principal , Conformação Proteica , Thermus thermophilus
18.
Proteins ; 85(8): 1422-1434, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28383162

RESUMO

It is known that over half of the proteins encoded by most organisms function as oligomeric complexes. Oligomerization confers structural stability and dynamics changes in proteins. We investigate the effects of oligomerization on protein dynamics and its functional significance for a set of 145 multimeric proteins. Using coarse-grained elastic network models, we inspect the changes in residue fluctuations upon oligomerization and then compare with residue conservation scores to identify the functional significance of these changes. Our study reveals conservation of about ½ of the fluctuations, with » of the residues increasing in their mobilities and » having reduced fluctuations. The residues with dampened fluctuations are evolutionarily more conserved and can serve as orthosteric binding sites, indicating their importance. We also use triosephosphate isomerase as a test case to understand why certain enzymes function only in their oligomeric forms despite the monomer including all required catalytic residues. To this end, we compare the residue communities (groups of residues which are highly correlated in their fluctuations) in the monomeric and dimeric forms of the enzyme. We observe significant changes to the dynamical community architecture of the catalytic core of this enzyme. This relates to its functional mechanism and is seen only in the oligomeric form of the protein, answering why proteins are oligomeric structures. Proteins 2017; 85:1422-1434. © 2017 Wiley Periodicals, Inc.


Assuntos
Arginase/química , D-Aminoácido Oxidase/química , Glutamato Desidrogenase/química , Glicina N-Metiltransferase/química , Multimerização Proteica , Triose-Fosfato Isomerase/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Termodinâmica
19.
PLoS Comput Biol ; 12(3): e1004826, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27010561

RESUMO

Bruton's tyrosine kinase (Btk) is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA). Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site.


Assuntos
Regulação Alostérica , Modelos Químicos , Simulação de Dinâmica Molecular , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/ultraestrutura , Triptofano/química , Tirosina Quinase da Agamaglobulinemia , Sítio Alostérico , Sequência de Aminoácidos , Sequência Conservada , Ativação Enzimática , Dados de Sequência Molecular , Movimento (Física) , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
20.
Nature ; 470(7335): 558-62, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21350490

RESUMO

Gram-negative bacteria, such as Escherichia coli, expel toxic chemicals through tripartite efflux pumps that span both the inner and outer membrane. The three parts are an inner membrane, substrate-binding transporter; a membrane fusion protein; and an outer-membrane-anchored channel. The fusion protein connects the transporter to the channel within the periplasmic space. A crystallographic model of this tripartite efflux complex has been unavailable because co-crystallization of the various components of the system has proven to be extremely difficult. We previously described the crystal structures of both the inner membrane transporter CusA and the membrane fusion protein CusB of the CusCBA efflux system of E. coli. Here we report the co-crystal structure of the CusBA efflux complex, showing that the transporter (or pump) CusA, which is present as a trimer, interacts with six CusB protomers and that the periplasmic domain of CusA is involved in these interactions. The six CusB molecules seem to form a continuous channel. The affinity of the CusA and CusB interaction was found to be in the micromolar range. Finally, we have predicted a three-dimensional structure for the trimeric CusC outer membrane channel and developed a model of the tripartite efflux assemblage. This CusC(3)-CusB(6)-CusA(3) model shows a 750-kilodalton efflux complex that spans the entire bacterial cell envelope and exports Cu I and Ag I ions.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Metais Pesados/metabolismo , Complexos Multiproteicos/química , Cobre/metabolismo , Cristalização , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Prata/metabolismo , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA