Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 32(45)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34340225

RESUMO

In this work, we present a novel force-sensing device with zinc oxide nanorods (ZnO NRs) integrated with a metal-oxide-semiconductor (MOS) capacitor and encapsulated with Kapton tape. The details of the fabrication process and working principle of the integrated ZnO NRs-MOS capacitor as a force sensor and nanogenerator have been discussed. The fabricated ZnO-MOS device is tested for both the open-circuit and resistor-connected mode. For an input force in the range of 1-32 N, the open-circuit output voltage of the device is measured to be in the range of 60-100 mV for different device configurations. In the resistor-connected mode, the maximum output power of 0.6 pW is obtained with a 1 MΩ external resistor and input force of 8 N. In addition, the influence of different seed layers (Ag and ZnO) and the patterning geometry of the ZnO nanorods on the output voltage of ZnO-MOS device have been investigated by experiments. An equivalent circuit model of the device has been developed to study the influence of the geometry of ZnO NRs and Kapton tape on the ZnO-MOS device voltage output. This study could be an example of integrating piezoelectric nanomaterials on traditional electronic devices and could inspire novel designs and fabrication methods for nanoscale self-powered force sensors and nanogenerators.

2.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502762

RESUMO

The addition of piezoelectric zinc oxide (ZnO) fillers into a flexible polymer matrix has emerged as potential piezocomposite materials that can be used for applications such as energy harvesters and pressure sensors. A simple approach for the fabrication of PDMS-ZnO piezoelectric nanocomposites based on two ZnO fillers: nanoparticles (NP) and nanoflowers (NF) is presented in this paper. The effect of the ZnO fillers' geometry and size on the thermal, mechanical and piezoelectric properties is discussed. The sensors were fabricated in a sandwich-like structure using aluminium (Al) thin films as top and bottom electrodes. Piezocomposites at a concentration of 10% w/w showed good flexibility, generating a piezoelectric response under compression force. The NF piezocomposites showed the highest piezoelectric response compared to the NP piezocomposites due to their geometric connectivity. The piezoelectric compound NF generated 4.2 V while the NP generated 1.86 V under around 36 kPa pressure. The data also show that the generated voltage increases with increasing applied force regardless of the type of filler.

3.
Nanoscale Adv ; 2(7): 2814-2823, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132407

RESUMO

In this study, ZnO nanowires with diameters ranging from 50 nm to 500 nm have been synthesized hydrothermally on Ag and ZnO seed layers deposited by electron beam evaporation. ZnO nanowires grown on hetero and homo interfaces have been studied by comparing the growth characteristics of (a) ZnO nanowires on the Ag seed layer and (b) ZnO nanowires grown on the ZnO seed layer, respectively. The surface morphology of the as-evaporated seed layers before the nanowire growth has been investigated. Electron backscatter diffraction (EBSD) has been employed to examine the crystallinity of ZnO nanowires. In addition, the integrity of the Ag-ZnO heterointerface has been investigated using high-resolution transmission electron microscopy (HR-TEM). The length, diameter, density, and alignment of nanowires grown on Ag and ZnO seed layers have been studied as a function of growth time from 0.5 hours to 18 hours and precursor concentration from 5 mM to 18 mM. Furthermore, for both the Ag-ZnO nanowire heterostructure and ZnO-ZnO nanowire homostructure, the role of defects in the optical properties in the wavelength range of 517 nm to 900 nm has been studied using photoluminescence (PL) spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA