Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7964): 294-300, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940729

RESUMO

Chiral amines are commonly used in the pharmaceutical and agrochemical industries1. The strong demand for unnatural chiral amines has driven the development of catalytic asymmetric methods1,2. Although the N-alkylation of aliphatic amines with alkyl halides has been widely adopted for over 100 years, catalyst poisoning and unfettered reactivity have been preventing the development of a catalyst-controlled enantioselective version3-5. Here we report the use of chiral tridentate anionic ligands to enable the copper-catalysed chemoselective and enantioconvergent N-alkylation of aliphatic amines with α-carbonyl alkyl chlorides. This method can directly convert feedstock chemicals, including ammonia and pharmaceutically relevant amines, into unnatural chiral α-amino amides under mild and robust conditions. Excellent enantioselectivity and functional-group tolerance were observed. The power of the method is demonstrated in a number of complex settings, including late-stage functionalization and in the expedited synthesis of diverse amine drug molecules. The current method indicates that multidentate anionic ligands are a general solution for overcoming transition-metal-catalyst poisoning.


Assuntos
Alquilação , Aminas , Catálise , Cobre , Amidas/química , Aminas/química , Cobre/química , Ligantes , Preparações Farmacêuticas/química
2.
Proc Natl Acad Sci U S A ; 121(28): e2322066121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968125

RESUMO

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid ß-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid ß-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid ß-oxidation.


Assuntos
Proteínas de Drosophila , Via de Sinalização Wnt , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adipócitos/metabolismo , Mobilização Lipídica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Lipólise , Lipogênese/genética , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos/genética , Larva/metabolismo , Larva/genética , Transcrição Gênica , Homeostase
3.
Nature ; 569(7758): 718-722, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118511

RESUMO

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNß after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.


Assuntos
Motivos de Aminoácidos , Sequência Conservada , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Células HEK293 , Humanos , Interferon beta/metabolismo , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Nucleotídeos Cíclicos/metabolismo , Ligação Proteica , Transdução de Sinais
4.
J Neurosci ; 43(4): 526-539, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36283831

RESUMO

The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl- channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the Xenopus oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.SIGNIFICANCE STATEMENT Proton-activated Cl- channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.


Assuntos
Hidrato de Cloral , Canais de Cloreto , Camundongos , Animais , Masculino , Humanos , Hidrato de Cloral/farmacologia , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Prótons , Cloretos/metabolismo , Camundongos Endogâmicos C57BL
5.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513075

RESUMO

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

6.
Small ; 20(22): e2309448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362699

RESUMO

Hydrogen peroxide (H2O2) is a highly value-added and environmental-friendly chemical with various applications. The production of H2O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process. High selectivity Catalysts combining with superior activity are critical for the efficient electrosynthesis of H2O2. Earth-abundant transition metal selenides (TMSs) being discovered as a classic of stable, low-cost, highly active and selective catalysts for electrochemical 2e- ORR. These features come from the relatively large atomic radius of selenium element, the metal-like properties and the abundant reserves. Moreover, compared with the advanced noble metal or single-atom catalysts, the kinetic current density of TMSs for H2O2 generation is higher in acidic solution, which enable them to become suitable catalyst candidates. Herein, the recent progress of TMSs for ORR to H2O2 is systematically reviewed. The effects of TMSs electrocatalysts on the activity, selectivity and stability of ORR to H2O2 are summarized. It is intended to provide an insight from catalyst design and corresponding reaction mechanisms to the device setup, and to discuss the relationship between structure and activity.

7.
Chemphyschem ; 25(14): e202400052, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38629246

RESUMO

A new group of BF3 complexing phosphate/phosphonate ionic liquids (ILs) [Emim][X(BF3)2] (X=dimethyl phosphate, diethyl phosphate, methyl phosphonate, and ethyl phosphonate) were synthesized and characterized. Key thermophysical properties of the new complex ionic liquids, including density, viscosity, conductivity, surface tension, solid-liquid phase transition, and thermal stability were determined and compared with those of [Emim][X]. Some other important thermophysical properties such as isobaric thermal expansion coefficient, molecular volume, standard molar entropy, and lattice potential energy were obtained from measured density data, and the free volume was estimated by a linear equation presented in this article, while critical temperature, normal boiling temperature, and enthalpy of vaporization were estimated from measured surface tension and density data. Furthermore, Fragility study shows that [Emim][X(BF3)2] should be considered as fragile liquids, while [Emim][X] could be considered as extremely fragile liquids. The ionicity of [Emim][X(BF3)2] was predicted by Walden rule, and the result shows that these ILs fit well with Walden law. The key features of these complex ILs are their extremely low glass transition (-95.33~-98.46 °C) without melting, considerably low viscosities (33.876~58.117 mPa ⋅ s), and high values of free volume fraction (comparable to [Omim][BF4], [Emim][NTf2], and [Emim][TCB]).

8.
Langmuir ; 40(20): 10561-10570, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728666

RESUMO

The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn-Ce-NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn-Ce-NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn-Ce-NCNTs is 68.1 mW cm-2 at the current density of 138.9 mA cm-2 for a Zn-air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm-2 at 106.1 mA cm-2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are -0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (-0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only -0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.

9.
Bioorg Med Chem Lett ; 104: 129708, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521176

RESUMO

Guaianolide dimers represent a unique class of natural products with anticancer activities, but their low content in plants has limited in-depth pharmacological studies. Lavandiolide I is a guaianolide dimer isolated from Artemisia species, and had been synthesized on a ten-gram scale in four steps with 60 % overall yield, which showed potent antihepatoma activity on the HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values of 12.1, 18.4, and 17.6 µM, respectively. To explore more active dimers, 33 lavandiolide I derivatives were designed, synthesized, and evaluated for their inhibitory activity on human hepatoma cell lines. Among them, 10 derivatives were more active than lavandiolide I and sorafenib on the three cell lines. The primary structure-activity relationship concluded that the introduction of aldehyde, ester, azide, amide, carbamate and urea functional groups at C-14' of the guaianolide dimer significantly enhanced the antihepatoma activity. Among these compounds, derivatives 25, 27, and 33 enhanced antihepatoma activity more than 1.2-5.8 folds than that of lavandiolide I, and demonstrated low toxicity to the human liver cell lines (THLE-2) and good safety profiles with selective index ranging from 1.3 to 3.4, while lavandiolide I was more toxic to THLE-2 cells. This work provides new insights into enhancing the antihepatoma efficacy and reducing the toxicity of sesquiterpenoid dimers.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sesquiterpenos de Guaiano , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Sesquiterpenos de Guaiano/síntese química , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/farmacologia
10.
J Fluoresc ; 34(1): 159-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37166610

RESUMO

A fluorescent probe Y((1,1'-([1,1'-biphenyl]-4,4'-diylbis(3-(2-hydroxyphenyl)-4,5-dihydro-1H-pyrazole-5,1-diyl)) bis(ethan-1-one))) was designed and synthesized, which could be used to Cu2+ and Fe3+ sensors. Through the study of optical properties, the probe Y shows good selectivity and sensitivity to Cu2+ and Fe3+ in aqueous tetrahydrofuran solution [10.0 mM HEPES, pH 7.4, THF-H2O = 9:1(v/v)] with has excellent anti-interference performance, and its detection limits were 0.931 uΜ for Cu2+ and 0.401uΜ for Fe3+. The coordination mechanism of probe Y with Cu2+ and Fe3+ was speculated and verified at DFT level and HRNM. By Hela cytotoxicity and imaging tests, probe Y not only has good biocompatibility, but also can be used for sensing Cu2+ in cells.


Assuntos
Cobre , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Cobre/química , Ferro/química , Células HeLa , Imagem Óptica , Espectrometria de Fluorescência
11.
Biochem Genet ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864962

RESUMO

Early metastasis of pancreatic cancer (PaC) is a major cause of its high mortality rate. Previous studies have shown that AHNAK2 is involved in the progression of some tumors and is predicted to be an independent prognostic factor for PaC; however, the specific mechanisms through which AHNAK2 regulates PaC remain unclear. In this study, we examined the role of AHNAK2 in PaC and its potential molecular mechanisms. AHNAK2 mRNA and protein expression in PaC tissues and cells were measured using qRT-PCR and western blot analysis. After AHNAK2 knockdown using small interfering RNA, PaC cells were subjected to CCK-8 scratch, and Transwell assays to assess cell proliferation, migration, and invasion, respectively. Furthermore, the validation of the mechanistic pathway was achieved by western blot analysis. AHNAK2 mRNA and protein levels were up-regulated in PaC and silencing AHNAK2 significantly inhibited the proliferation, migration, and invasion of PaC cells. Mechanistically, AHNAK2 knockdown decreased the expression of phosphorylated p65, phosphorylated IκBα, and matrix metalloproteinase-9 (MMP-9), suggesting that activation of the NF-κB/MMP-9 signaling pathway was inhibited. Importantly, activation of NF-κB reversed the effects of AHNAK2 knockdown. Our findings indicate that AHNAK2 promotes PaC progression through the NF-kB/MMP-9 pathway and provides a theoretical basis for targeting AHNAK2 for the treatment of PaC.

12.
J Environ Manage ; 362: 121302, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824896

RESUMO

Two industrial solid wastes, Ti-bearing blast furnace slag (TBFS) and diamond wire saw silicon waste (DWSSW), contain large amounts of Ti and Si, and their accumulation wastes resources and intensifies environmental pollution. In the present study, DWSSW was used as the silicon source to reduce titanium oxide in TBFS by electromagnetic induction smelting, and meanwhile Na3AlF6 was added as a flux to improve the recycling of the wastes. Ti and Si of the two wastes were simultaneously recovered in the form of alloy. The effects of different addition amount of Na3AlF6 flux in the mixture of DWSSW and TBFS on chemical composition, viscosity, basicity and structure of slag were investigated. The dissolution behavior of SiO2 in Na3AlF6 flux was theoretically deduced and experimentally verification. The optimized recovery rate of Ti and Si were obtained, and the research realizes the efficient recycling of DWSSW and TBFS simultaneously.


Assuntos
Ligas , Reciclagem , Silício , Titânio , Titânio/química , Silício/química , Ligas/química , Diamante/química , Resíduos Industriais/análise
13.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542854

RESUMO

This paper developed a method for preparing ultrasound-responsive microgels based on reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HAD) dynamic covalent bonding. First, a styrene cross-linked network was successfully prepared by a Diels-Alder (DA) reaction between phosphoryl dithioester and furan using double-ended diethoxyphosphoryl dithiocarbonate (BDEPDF) for RAFT reagent-mediated styrene (St) polymerization, with a double-ended dienophile linker and copolymer of furfuryl methacrylate (FMA) and St as the dienophile. Subsequently, the microgel system was constructed by the HDA reaction between phosphoryl disulfide and furan groups using the copolymer of polyethylene glycol monomethyl ether acrylate (OEGMA) and FMA as the dienophore building block and hydrophilic segment and the polystyrene pro-dienophile linker as the cross-linker and hydrophobic segment. The number of furans in the dienophile chain and the length of the dienophile linker were regulated by RAFT polymerization to investigate the effects of the single-molecule chain functional group degree, furan/dithioester ratio, and hydrophobic cross-linker length on the microgel system. The prepared microgels can achieve the reversible transformation of materials under force responsiveness, and their preparation steps are simple and adaptive to various potential applications in biomedical materials and adaptive electrical materials.

14.
J Sci Food Agric ; 104(9): 5419-5434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38334319

RESUMO

BACKGROUND: Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS: The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION: These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Microbioma Gastrointestinal , Juglans , Hidrolisados de Proteína , Tilápia , Animais , Juglans/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/administração & dosagem , Hidrolisados de Proteína/farmacologia , Tilápia/metabolismo , Camundongos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Proteínas de Peixes/química , Humanos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas , Sinergismo Farmacológico , Cognição/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Suplementos Nutricionais/análise
15.
J Am Chem Soc ; 145(46): 25252-25263, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37957828

RESUMO

The development of highly active and low-cost oxygen reduction reaction (ORR) catalysts is crucial for the practical application of hydrogen fuel cells. However, the linear scaling relation (LSR) imposes an inherent Sabatier's limitation for most catalysts including the benchmark Pt with an insurmountable overpotential ceiling, impeding the development of efficient electrocatalysts. To avoid such a limitation, using earth-abundant metal oxides with different crystal phases as model materials, we propose an effective and dynamic reaction pathway through constructing spatially correlated Pt-Mn pair sites, achieving an excellent balance between high activity and low Pt loading. Experimental and theoretical calculations demonstrate that manipulating the intermetallic distance and charge distribution of Pt-Mn pairs can effectively promote O-O bond cleavage at these sites through a bridge configuration, circumventing the formation of *OOH intermediates. Meanwhile, the dynamic adsorption configuration transition from the bridge configuration of O2 to the end-on configuration of *OH improves *OH desorption at the Mn site within such pairs, thereby avoiding Sabatier's limitation. The well-designed Pt-Mn/ß-MnO2 exhibits outstanding ORR activity and stability with a half-wave potential of 0.93 V and barely any activity degradation for 70 h. When applied to the cathode of a H2-O2 anion-exchange membrane fuel cell, this catalyst demonstrates a high peak power density of 287 mW cm-2 and 500 h of stability under a cell voltage of 0.6 V. This work reveals the adaptive bonding interactions of atomic pair sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed ORR catalysts beyond the Sabatier optimum.

16.
J Am Chem Soc ; 145(4): 2271-2281, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654479

RESUMO

Dynamic reconstruction of catalyst active sites is particularly important for metal oxide-catalyzed oxygen evolution reaction (OER). However, the mechanism of how vacancy-induced reconstruction aids OER remains ambiguous. Here, we use Co3O4 with Co or O vacancies to uncover the effects of different defects in the reconstruction process and the active motifs relevant to alkaline OER. Combining in situ characterization and theoretical calculations, we found that cobalt oxides are converted to an amorphous [Co(OH)6] intermediate state, and then the mismatched rates of *OH adsorption and deprotonation lead to irreversible catalyst reconstruction. The stronger *OH adsorption but weaker deprotonation induced by O defects provides the driving force for reconstruction, while Co defects favor dehydrogenation and reduce the reconstruction rate. Importantly, both O and Co defects trigger highly OER-active bridge Co sites in reconstructed catalysts, of which Co defects induce a short Co-Co distance (3.38 Å) under compressive lattice stress and show the best OER activity (η10 of 262 mV), superior to reconstructed oxygen-defected Co3O4-VO (η10 of 300 mV) and defect-free Co3O4 (η10 of 320 mV). This work highlights that engineering defect-dependent reconstruction may provide a rational route for electrocatalyst design in energy-related applications.

17.
J Am Chem Soc ; 145(27): 14686-14696, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37392183

RESUMO

The enantioconvergent C(sp3)-N cross-coupling of racemic alkyl halides with (hetero)aromatic amines represents an ideal means to afford enantioenriched N-alkyl (hetero)aromatic amines yet has remained unexplored due to the catalyst poisoning specifically for strong-coordinating heteroaromatic amines. Here, we demonstrate a copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. The key to success is the judicious selection of appropriate multidentate anionic ligands through readily fine-tuning both electronic and steric properties for the formation of a stable and rigid chelating Cu complex. Thus, this kind of ligand could not only enhance the reducing capability of a copper catalyst to provide an enantioconvergent radical pathway but also avoid the coordination with other coordinating heteroatoms, thereby overcoming catalyst poisoning and/or chiral ligand displacement. This protocol covers a wide range of coupling partners (89 examples for activated racemic secondary/tertiary alkyl bromides/chlorides and (hetero)aromatic amines) with high functional group compatibility. When allied with follow-up transformations, it provides a highly flexible platform to access synthetically useful enantioenriched amine building blocks.

18.
J Med Virol ; 95(2): e28542, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36727647

RESUMO

The ongoing pandemic with the emergence of immune evasion potential and, particularly, the current omicron subvariants intensified the situation further. Although vaccines are available, the immune evasion capabilities of the recent variants demand further efficient therapeutic choices to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Hence, considering the necessity of the small molecule inhibitor, we target the main protease (3CLpro), which is an appealing target for the development of antiviral drugs against SARS-CoV-2. High-throughput molecular in silico screening of South African natural compounds database reported Isojacareubin and Glabranin as the potential inhibitors for the main protease. The calculated docking scores were reported to be -8.47 and -8.03 kcal/mol, respectively. Moreover, the structural dynamic assessment reported that Isojacareubin in complex with 3CLpro exhibit a more stable dynamic behavior than Glabranin. Inhibition assay indicated that Isojacareubin could inhibit SARS-CoV-2 3CLpro in a time- and dose-dependent manner, with half maximal inhibitory concentration values of 16.00 ± 1.35 µM (60 min incubation). Next, the covalent binding sites of Isojacareubin on SARS-CoV-2 3CLpro was identified by biomass spectrometry, which reported that Isojacareubin can covalently bind to thiols or Cysteine through Michael addition. To evaluate the inactivation potency of Isojacareubin, the inactivation kinetics was further investigated. The inactivation kinetic curves were plotted according to various concentrations with gradient-ascending incubation times. The KI value of Isojacareubin was determined as 30.71 µM, whereas the Kinact value was calculated as 0.054 min-1 . These results suggest that Isojacareubin is a covalent inhibitor of SARS-CoV-2 3CLpro .


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteases 3C de Coronavírus , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Antivirais/farmacologia
19.
Phys Rev Lett ; 131(15): 157201, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897754

RESUMO

Higher-order topological band theory has transformed the landscape of topological phases in quantum and classical systems. Here, we experimentally demonstrate a two-dimensional higher-order topological phase, referred to as the multiple chiral topological phase, which is protected by a multipole chiral number (MCN). Our realization differs from previous higher-order topological phases in that it possesses a larger-than-unity MCN, which arises when the nearest-neighbor couplings are weaker than long-range couplings. Our phase has an MCN of 4, protecting the existence of 4 midgap topological corner modes at each corner. The multiple topological corner modes demonstrated here could lead to enhanced quantum-inspired devices for sensing and computing. Our study also highlights the rich and untapped potential of long-range coupling manipulation for future research in topological phases.

20.
Phys Rev Lett ; 131(23): 234001, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134795

RESUMO

Diffraction sets a natural limit for the spatial resolution of acoustic wave fields, hindering the generation and recording of object details and manipulation of sound at subwavelength scales. We propose to overcome this physical limit by utilizing nonlinear acoustics. Our findings indicate that, contrary to the commonly utilized cumulative nonlinear effect, it is in fact the local nonlinear effect that is crucial in achieving subdiffraction control of acoustic waves. We theoretically and experimentally demonstrate a deep subwavelength spatial resolution up to λ/38 in the far field at a distance 4.4 times the Rayleigh distance. This Letter represents a new avenue towards deep subdiffraction control of sound, and may have far-reaching impacts on various applications such as acoustic holograms, imaging, communication, and sound zone control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA