Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23387, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193649

RESUMO

Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1ß, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1ß), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.


Assuntos
Exossomos , MicroRNAs , Acidente Vascular Cerebral , Animais , Camundongos , Humanos , Células Endoteliais , Microglia , Receptor 4 Toll-Like/genética , NF-kappa B , Fator de Necrose Tumoral alfa , Encéfalo , Hipóxia , Oxigênio , Citocinas , MicroRNAs/genética
2.
Biomed Pharmacother ; 126: 109786, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32113052

RESUMO

Ischemic stroke is a serious threat to human life and health, which is often accompanied by cerebral ischemia-reperfusion (I/R) injury in clinic. Ischemic postconditioning (IPostC) is a short period of mild non-fatal ischemia in the early stage of cerebral I/R injury. However, there are few reports about the protective effect of IPostC. In the present study, we investigated the neuroprotective effect of IPostC in a mice model of ischemia induced by the middle cerebral artery occlusion (MCAO). MicroRNA-124(miR-124) is a small RNA highly expressed in the brain. Several studies have shown that miR-124 is significantly decreased in IPostC. Therefore, we hypothesize that IPostC may play an important role by downregulating the expression of miR-124. Mice were treated with cerebral I/R and IPostC treatment on the basis of MCAO. The results showed that IPostC significantly reduced neurobehavioral deficits and decreased brain infarct volume. Moreover, we also found that inhibiting miR-124 effectively reduced neurons/cells apoptosis in vivo and vitro. In addition, western blot analysis of apoptosis-related proteins and PI3K/Akt2 signaling pathway proteins showed that downregulation of miR-124 significantly decreased the expression of Caspase-3 and BAX, and increased the expression of anti-apoptotic protein Bcl-2. Inhibition of miR-124 also increase PI3K/Akt/mTOR signaling pathway, thus inhibiting cell apoptosis and autophagy. However, overexpression of miR-124 weakens the protective effect of IPostC. These observations suggest that IPostC exerts its neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by miR-124.


Assuntos
Infarto Cerebral/patologia , Pós-Condicionamento Isquêmico , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neurônios , Células PC12 , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Transdução de Sinais
3.
Neuromolecular Med ; 22(2): 264-277, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31792810

RESUMO

BACKGROUND: Scutellarin, an herbal compound, can effectively suppress the inflammatory response in activated microglia/brain macrophage(AM/BM) in experimentally induced cerebral ischemia; however, the underlying mechanism for this has not been fully clarified. We sought to elucidate if scutellarin would exert its anti-inflammatory effects on AM/BM through the MAPKs pathway. MATERIALS AND METHODS: Western blot and immunofluorescence labeling were used to determine the expression of the MAPKs pathway in AM/BM in rats subjected to middle cerebral artery occlusion (MCAO) also in lipopolysaccharide (LPS)-activated BV-2 microglia in vitro. Furthermore, expression of p-p38 along with that of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta(IL-1ß), and inducible nitric oxide synthase (iNOS) in LPS-activated microglia subjected to pretreatment with p38 inhibitor SB203580, p38 activator sc-201214, scutellarin, or a combination of them was evaluated. FINDINGS: Scutellarin markedly attenuated the expression of p-p38, p-JNK in AM/BM in MCAO rats and in vitro. Conversely, p-ERK1/2 expression level was significantly increased by scutellarin. Meanwhile, scutellarin suppressed the expression of proinflammatory mediators including iNOS, TNF-α, and IL-1ß in AM/BM. More importantly, SB203580 suppressed p-p38 protein expression level in LPS-activated BV-2 microglia that was coupled with decreased expression of proinflammatory mediators (TNF-α, iNOS) in LPS-activated BV-2 microglia. However, p38 activator sc-201214 increased expression of proinflammatory mediators TNF-α, iNOS, and IL-1ß. Interestingly, the decreased expression of both proinflammatory markers by p38 MAPK inhibitor and increased expression of proinflammatory markers by p38 MAPK activator were compatible with that in BV-2-activated microglia pretreated with scutellarin. CONCLUSIONS: The results suggest that scutellarin down-regulates the expression of proinflammatory mediators in AM/BM through suppressing the p-JNK and p-p38 MAPKs. Of note, the anti-inflammatory effect of p38 MAPK inhibitor and scutellarin is comparable. Besides, p38 MAPKs activator reverses the effect of scutellarin. Additionally, scutellarin increases p-ERK1/2 expression that may be neuroprotective.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apigenina/farmacologia , Glucuronatos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Apigenina/uso terapêutico , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronatos/uso terapêutico , Imidazóis/farmacologia , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Piridinas/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
4.
Histol Histopathol ; 34(9): 965-983, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30900737

RESUMO

Cerebral ischemia affects many especially with the ageing population. The ensuing ischemic reactions include oxidative stress, inflammation, and excitotoxicity among others. In the search for effective therapeutic strategies for cerebral ischemia, activated microglia which are the key player in neuroinflammation are now recognized as a potential therapeutic target. Microglia possess both neurotoxic and neuroprotective roles. They are protective by continuously surveilling the microenvironment, phagocytosing dead cells, secreting trophic factors and sculpting the neuronal connections by removing axons and pruning excess synapses. On the other hand, hyperactivated microglia may impair cerebral oxidative metabolism, and produce excessive proinflammatory mediators that may exacerbate the brain damage. In view of this, suppression of microglial activation has been considered a therapeutic strategy to mitigate microglia-based neuroinflammation in cerebral ischemia. However, balancing the neuroprotective and neurotoxic roles of activated microglia remains a challenging issue. Many traditional Chinese herbal agents have been used in clinic for treatment of cerebral ischemia. Here, we provide an overview of five common Chinese herbs targeting specifically microglia-mediated neuroinflammation in cerebral ischemia. It is hoped that a common parallel may be drawn from their beneficial effects especially in the latter pathological conditions for their better and effective use in the future.


Assuntos
Isquemia Encefálica/patologia , Medicamentos de Ervas Chinesas/farmacologia , Microglia/efeitos dos fármacos , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA