Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(5): 1985-1999, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38374801

RESUMO

Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to minimize sprouting and losses due to disease. However, cold temperatures strongly induce the expression of the potato vacuolar invertase gene (VInv) and cause reducing sugar accumulation. This process, referred to as "cold-induced sweetening," is a major postharvest problem for the potato industry. We discovered that the cold-induced expression of VInv is controlled by a 200 bp enhancer, VInvIn2En, located in its second intron. We identified several DNA motifs in VInvIn2En that bind transcription factors involved in the plant cold stress response. Mutation of these DNA motifs abolished VInvIn2En function as a transcriptional enhancer. We developed VInvIn2En deletion lines in both diploid and tetraploid potato using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. VInv transcription in cold-stored tubers was significantly reduced in the deletion lines. Interestingly, the VInvIn2En sequence is highly conserved among distantly related Solanum species, including tomato (Solanum lycopersicum) and other non-tuber-bearing species. We conclude that the VInv gene and the VInvIn2En enhancer have adopted distinct roles in the cold stress response in tubers of tuber-bearing Solanum species.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Íntrons , Solanum tuberosum , beta-Frutofuranosidase , Solanum tuberosum/genética , Solanum tuberosum/enzimologia , Íntrons/genética , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Elementos Facilitadores Genéticos/genética , Vacúolos/metabolismo , Edição de Genes , Plantas Geneticamente Modificadas , Tubérculos/genética , Tubérculos/enzimologia , Sistemas CRISPR-Cas
2.
Nature ; 590(7846): 438-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505029

RESUMO

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Assuntos
Aclimatação/genética , Biocombustíveis , Genoma de Planta/genética , Genômica , Aquecimento Global , Panicum/genética , Poliploidia , Biomassa , Ecótipo , Evolução Molecular , Fluxo Gênico , Pool Gênico , Introgressão Genética , Anotação de Sequência Molecular , Panicum/classificação , Panicum/crescimento & desenvolvimento , Estados Unidos
3.
Proc Natl Acad Sci U S A ; 120(44): e2303836120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871213

RESUMO

Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation of cis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.


Assuntos
Evolução Molecular , Glycine max , Glycine max/genética , Glycine max/metabolismo , Genoma , Genes Duplicados/genética , Sequência de Bases , Duplicação Gênica , Genoma de Planta/genética
4.
Plant J ; 118(2): 549-564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184780

RESUMO

Epigenetic regulation of gene expression plays a crucial role in plant development and environmental adaptation. The H3K4me3 and H3K27me3 have not only been discovered in the regulation of gene expression in multiple biological processes but also in responses to abiotic stresses in plants. However, evidence for the presence of both H3K4me3 and H3K27me3 on the same nucleosome is sporadic. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modifications and nucleosome depletion over a considerable number of active genes is documented in potato tubers and provides clues on an additional role of the bivalent modifications. Limited by the available information of genes encoding PcG/TrxG proteins as well as their corresponding mutants in potatoes, the molecular mechanism underlying the cold-induced deposition of the bivalent mark remains elusive. In this study, we found a similar deposition of the bivalent H3K4me3-H3K27me3 mark over 2129 active genes in cold-treated Arabidopsis Col-0 seedlings. The expression levels of the bivalent mark-associated genes tend to be independent of bivalent modification levels. However, these genes were associated with greater chromatin accessibility, presumably to provide a distinct chromatin environment for gene expression. In mutants clf28 and lhp1, failure to deposit H3K27me3 in active genes upon cold treatment implies that the CLF is potentially involved in cold-induced deposition of H3K27me3, with assistance from LHP1. Failure to deposit H3K4me3 during cold treatment in atx1-2 suggests a regulatory role of ATX1 in the deposition of H3K4me3. In addition, we observed a cold-induced global reduction in nucleosome occupancy, which is potentially mediated by LHP1 in an H3K27me3-dependent manner.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Epigênese Genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas/genética
5.
Plant Physiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478471

RESUMO

During meiotic prophase I, chromosomes undergo large-scale dynamics to allow homologous chromosome pairing, prior to which chromosome ends attach to the inner nuclear envelope and form a chromosomal bouquet. Chromosome pairing is crucial for homologous recombination and accurate chromosome segregation during meiosis. However, the specific mechanism by which homologous chromosomes recognize each other is poorly understood. Here, we investigated the process of homologous chromosome pairing during early prophase I of meiosis in rice (Oryza sativa) using pooled oligo probes specific to an entire chromosome or chromosome arm. We revealed that chromosome pairing begins from both ends and extends towards the center from early zygotene through late zygotene. Genetic analysis of both trisomy and autotetraploidy also showed that pairing initiation is induced by both ends of a chromosome. However, healed ends that lack the original terminal regions on telocentric and acrocentric chromosomes cannot initiate homologous chromosome pairing, even though they may still enter the telomere clustering region at the bouquet stage. Furthermore, a chromosome that lacks the distal parts on both sides loses the ability to pair with other intact chromosomes. Thus, the native ends of chromosomes play a crucial role in initiating homologous chromosome pairing during meiosis and likely have a substantial impact on genome differentiation.

6.
Plant Physiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652695

RESUMO

Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat (LTR) retrotransposon CRM (centromeric retrotransposon of maize), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. By contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared to the CRM elements. Using a phylogenetically guided approach we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.

7.
Proc Natl Acad Sci U S A ; 119(48): e2215328119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409894

RESUMO

Super-enhancers (SEs) are exceptionally large enhancers and are recognized to play prominent roles in cell identity in mammalian species. We surveyed the genomic regions containing large clusters of accessible chromatin regions (ACRs) marked by deoxyribonuclease (DNase) I hypersensitivity in Arabidopsis thaliana. We identified a set of 749 putative SEs, which have a minimum length of 1.5 kilobases and represent the top 2.5% of the largest ACR clusters. We demonstrate that the genomic regions associating with these SEs were more sensitive to DNase I than other nonpromoter ACRs. The SEs were preferentially associated with topologically associating domains. Furthermore, the SEs and their predicted cognate genes were frequently associated with organ development and tissue identity in A. thaliana. Therefore, the A. thaliana SEs and their cognate genes mirror the functional characteristics of those reported in mammalian species. We developed CRISPR/Cas-mediated deletion lines of a 3,578-bp SE associated with the thalianol biosynthetic gene cluster (BGC). Small deletions (131-157 bp) within the SE resulted in distinct phenotypic changes and transcriptional repression of all five thalianol genes. In addition, T-DNA insertions in the SE region resulted in transcriptional alteration of all five thalianol genes. Thus, this SE appears to play a central role in coordinating the operon-like expression pattern of the thalianol BGC.


Assuntos
Arabidopsis , Triterpenos , Animais , Arabidopsis/genética , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , Mamíferos/genética
8.
Plant Cell ; 33(6): 1997-2014, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33764459

RESUMO

Enhancers located in introns are abundant and play a major role in the regulation of gene expression in mammalian species. By contrast, the functions of intronic enhancers in plants have largely been unexplored and only a handful of plant intronic enhancers have been reported. We performed a genome-wide prediction of intronic enhancers in Arabidopsis thaliana using open chromatin signatures based on DNase I sequencing. We identified 941 candidate intronic enhancers associated with 806 genes in seedling tissue and 1,271 intronic enhancers associated with 1,069 genes in floral tissue. We validated the function of 15 of 21 (71%) of the predicted intronic enhancers in transgenic assays using a reporter gene. We also created deletion lines of three intronic enhancers associated with two different genes using CRISPR/Cas. Deletion of these enhancers, which span key transcription factor binding sites, did not abolish gene expression but caused varying levels of transcriptional repression of their cognate genes. Remarkably, the transcriptional repression of the deletion lines occurred at specific developmental stages and resulted in distinct phenotypic effects on plant morphology and development. Clearly, these three intronic enhancers are important in fine-tuning tissue- and development-specific expression of their cognate genes.


Assuntos
Arabidopsis/genética , Elementos Facilitadores Genéticos , Edição de Genes/métodos , Regulação da Expressão Gênica de Plantas , Íntrons , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cromatina/genética , Flores/genética , Genes Reporter , Glucuronidase/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
9.
Theor Appl Genet ; 137(1): 29, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261028

RESUMO

KEY MESSAGE: Inversions and translocations are the major chromosomal rearrangements involved in Vigna subgenera evolution, being Vigna vexillata the most divergent species. Centromeric repositioning seems to be frequent within the genus. Oligonucleotide-based fluorescence in situ hybridization (Oligo-FISH) provides a powerful chromosome identification system for inferring plant chromosomal evolution. Aiming to understand macrosynteny, chromosomal diversity, and the evolution of bean species from five Vigna subgenera, we constructed cytogenetic maps for eight taxa using oligo-FISH-based chromosome identification. We used oligopainting probes from chromosomes 2 and 3 of Phaseolus vulgaris L. and two barcode probes designed from V. unguiculata (L.) Walp. genome. Additionally, we analyzed genomic blocks among the Ancestral Phaseoleae Karyotype (APK), two V. unguiculata subspecies (V. subg. Vigna), and V. angularis (Willd.) Ohwi & Ohashi (V. subg. Ceratotropis). We observed macrosynteny for chromosomes 2, 3, 4, 6, 7, 8, 9, and 10 in all investigated taxa except for V. vexillata (L.) A. Rich (V. subg. Plectrotropis), in which only chromosomes 4, 7, and 9 were unambiguously identified. Collinearity breaks involved with chromosomes 2 and 3 were revealed. We identified minor differences in the painting pattern among the subgenera, in addition to multiple intra- and interblock inversions and intrachromosomal translocations. Other rearrangements included a pericentric inversion in chromosome 4 (V. subg. Vigna), a reciprocal translocation between chromosomes 1 and 5 (V. subg. Ceratotropis), a potential deletion in chromosome 11 of V. radiata (L.) Wilczek, as well as multiple intrablock inversions and centromere repositioning via genomic blocks. Our study allowed the visualization of karyotypic patterns in each subgenus, revealing important information for understanding intrageneric karyotypic evolution, and suggesting V. vexillata as the most karyotypically divergent species.


Assuntos
Phaseolus , Vigna , Vigna/genética , Hibridização in Situ Fluorescente , Translocação Genética , Rearranjo Gênico , Phaseolus/genética
10.
Stat Med ; 43(7): 1329-1340, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38279656

RESUMO

In nowadays biomedical research, there has been a growing demand for making accurate prediction at subject levels. In many of these situations, data are collected as longitudinal curves and display distinct individual characteristics. Thus, prediction mechanisms accommodated with functional mixed effects models (FMEM) are useful. In this paper, we developed a classified functional mixed model prediction (CFMMP) method, which adapts classified mixed model prediction (CMMP) to the framework of FMEM. Performance of CFMMP against functional regression prediction based on simulation studies and the consistency property of CFMMP estimators are explored. Real-world applications of CFMMP are illustrated using real world examples including data from the hormone research menstrual cycles and the diffusion tensor imaging.


Assuntos
Imagem de Tensor de Difusão , Ciclo Menstrual , Feminino , Humanos , Simulação por Computador
11.
BMC Biol ; 21(1): 165, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525156

RESUMO

BACKGROUND: The development of cotton fiber is regulated by the orchestrated binding of regulatory proteins to cis-regulatory elements associated with developmental genes. The cis-trans regulatory dynamics occurred throughout the course of cotton fiber development are elusive. Here we generated genome-wide high-resolution DNase I hypersensitive sites (DHSs) maps to understand the regulatory mechanisms of cotton ovule and fiber development. RESULTS: We generated DNase I hypersensitive site (DHS) profiles from cotton ovules at 0 and 3 days post anthesis (DPA) and fibers at 8, 12, 15, and 18 DPA. We obtained a total of 1185 million reads and identified a total of 199,351 DHSs through ~ 30% unique mapping reads. It should be noted that more than half of DNase-seq reads mapped multiple genome locations and were not analyzed in order to achieve a high specificity of peak profile and to avoid bias from repetitive genomic regions. Distinct chromatin accessibilities were observed in the ovules (0 and 3 DPA) compared to the fiber elongation stages (8, 12, 15, and 18 DPA). Besides, the chromatin accessibility during ovules was particularly elevated in genomic regions enriched with transposable elements (TEs) and genes in TE-enriched regions were involved in ovule cell division. We analyzed cis-regulatory modules and revealed the influence of hormones on fiber development from the regulatory divergence of transcription factor (TF) motifs. Finally, we constructed a reliable regulatory network of TFs related to ovule and fiber development based on chromatin accessibility and gene co-expression network. From this network, we discovered a novel TF, WRKY46, which may shape fiber development by regulating the lignin content. CONCLUSIONS: Our results not only reveal the contribution of TEs in fiber development, but also predict and validate the TFs related to fiber development, which will benefit the research of cotton fiber molecular breeding.


Assuntos
Cromatina , Fatores de Transcrição , Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Redes Reguladoras de Genes , Desoxirribonuclease I/genética
12.
Plant J ; 112(1): 55-67, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998122

RESUMO

Aegilops species represent the most important gene pool for breeding bread wheat (Triticum aestivum). Thus, understanding the genome evolution, including chromosomal structural rearrangements and syntenic relationships among Aegilops species or between Aegilops and wheat, is important for both basic genome research and practical breeding applications. In the present study, we attempted to develop subgenome D-specific fluorescence in situ hybridization (FISH) probes by selecting D-specific oligonucleotides based on the reference genome of Chinese Spring. The oligo-based chromosome painting probes consisted of approximately 26 000 oligos per chromosome and their specificity was confirmed in both diploid and polyploid species containing the D subgenome. Two previously reported translocations involving two D chromosomes have been confirmed in wheat varieties and their derived lines. We demonstrate that the oligo painting probes can be used not only to identify the translocations involving D subgenome chromosomes, but also to determine the precise positions of chromosomal breakpoints. Chromosome painting of 56 accessions of Ae. tauschii from different origins led us to identify two novel translocations: a reciprocal 3D-7D translocation in two accessions and a complex 4D-5D-7D translocation in one accession. Painting probes were also used to analyze chromosomes from more diverse Aegilops species. These probes produced FISH signals in four different genomes. Chromosome rearrangements were identified in Aegilops umbellulata, Aegilops markgrafii, and Aegilops uniaristata, thus providing syntenic information that will be valuable for the application of these wild species in wheat breeding.


Assuntos
Aegilops , Triticum , Aegilops/genética , Coloração Cromossômica , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente , Oligonucleotídeos , Melhoramento Vegetal , Translocação Genética/genética , Triticum/genética
13.
Plant J ; 106(3): 661-671, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547831

RESUMO

Gene expression is controlled and regulated by interactions between cis-regulatory DNA elements (CREs) and regulatory proteins. Enhancers are one of the most important classes of CREs in eukaryotes. Eukaryotic genes, especially those related to development or responses to environmental cues, are often regulated by multiple enhancers in different tissues and/or at different developmental stages. Remarkably, little is known about the molecular mechanisms by which enhancers regulate gene expression in plants. We identified a distal enhancer, CREß, which regulates the expression of AtDGK7, which encodes a diacylglycerol kinase in Arabidopsis. We developed a transgenic line containing the luciferase reporter gene (LUC) driven by CREß fused with a minimal cauliflower mosaic virus (CaMV) 35S promoter. The CREß enhancer was shown to play a role in the response to osmotic pressure of the LUC reporter gene. A forward genetic screen pipeline based on the transgenic line was established to generate mutations associated with altered expression of the LUC reporter gene. We identified a suite of mutants with variable LUC expression levels as well as different segregation patterns of the mutations in populations. We demonstrate that this pipeline will allow us to identify trans-regulatory factors associated with CREß function as well as those acting in the regulation of the endogenous AtDGK7 gene.


Assuntos
Arabidopsis/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica de Plantas/genética , Genes Reporter/genética , Testes Genéticos/métodos , Arabidopsis/metabolismo , Caulimovirus/genética , Epigenômica , Biblioteca Gênica , Pressão Osmótica , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética
14.
Chromosoma ; 130(2-3): 133-147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909141

RESUMO

Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.


Assuntos
Phaseolus , Vigna , Cromossomos de Plantas/genética , Phaseolus/genética , Sintenia , Translocação Genética , Vigna/genética
15.
New Phytol ; 233(4): 1953-1965, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34874076

RESUMO

Karyotypes provide key cytogenetic information on the phylogenetic relationships and evolutionary origins in related eukaryotic species. Despite our knowledge of the chromosome numbers of sugarcane and its wild relatives, the chromosome composition and evolution among the species in the Saccharum complex have been elusive owing to the complex polyploidy and the large numbers of chromosomes of these species. Oligonucleotide-based chromosome painting has become a powerful tool of cytogenetic studies especially for plant species with large numbers of chromosomes. We developed oligo-based chromosome painting probes for all 10 chromosomes in Saccharum officinarum (2n = 8x = 80). The 10 painting probes generated robust fluorescence in situ hybridization signals in all plant species within the Saccharum complex, including species in the genera Saccharum, Miscanthus, Narenga and Erianthus. We conducted comparative chromosome analysis using the same set of probes among species from four different genera within the Saccharum complex. Excitingly, we discovered several novel cytotypes and chromosome rearrangements in these species. We discovered that fusion from two different chromosomes is a common type of chromosome rearrangement associated with the species in the Saccharum complex. Such fusion events changed the basic chromosome number and resulted in distinct allopolyploids in the Saccharum complex.


Assuntos
Coloração Cromossômica , Saccharum , Coloração Cromossômica/métodos , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Filogenia , Saccharum/genética
16.
Plant Physiol ; 185(4): 1708-1721, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793932

RESUMO

Shoot branching is an important aspect of plant architecture because it substantially affects plant biology and agricultural performance. Sugars play an important role in the induction of shoot branching in several species, including potato (Solanum tuberosum L.). However, the mechanism by which sugars affect shoot branching remains mostly unknown. In the present study, we addressed this question using sugar-mediated induction of bud outgrowth in potato stems under etiolated conditions. Our results indicate that sucrose feeding to detached stems promotes the accumulation of cytokinin (CK), as well as the expression of vacuolar invertase (VInv), an enzyme that contributes to sugar sink strength. These effects of sucrose were suppressed by CK synthesis and perception inhibitors, while CK supplied to detached stems induced bud outgrowth and VInv activity in the absence of sucrose. CK-induced bud outgrowth was suppressed in vinv mutants, which we generated by genome editing. Altogether, our results identify a branching-promoting module, and suggest that sugar-induced lateral bud outgrowth is in part promoted by the induction of CK-mediated VInv activity.


Assuntos
Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Variação Genética , Genótipo , Israel , Mutação , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
17.
Plant Cell ; 31(3): 645-662, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30705136

RESUMO

Recombination plays an integral role in the creation of novel genetic variation in sexually reproducing species. Despite this important role, the determinants and evolution of crossover hotspots have remained poorly understood in plants. Here, we present a comparative analysis of two rice (Oryza sativa) historical recombination maps from two subspecies (indica and japonica) using 150 resequenced genomes. Fine-scale recombination rates and crossover hotspots were validated by comparison with a consensus genetic map and empirically derived crossovers, respectively. Strikingly, nearly 80% of crossover hotspots were unique to each subspecies, despite their relatively recent divergence and broad-scale correlated recombination rates. Crossover hotspots were enriched with Stowaway and P instability factor (PIF)/Harbinger transposons and overlapped accessible chromatin regions. Increased nucleotide diversity and signatures of population differentiation augmented by Stowaway and PIF/Harbinger transposons were prevalent at subspecies-specific crossover hotspots. Motifs derived from lineage-specific indica and japonica crossover hotspots were nearly identical in the two subspecies, implicating a core set of crossover motifs in rice. Finally, Stowaway and PIF/Harbinger transposons were associated with stabilized G/C bias within highly active hotspots, suggesting that hotspot activity can be fueled by de novo variation. These results provide evolutionary insight into historical crossover hotspots as potentially powerful drivers of sequence and subspecies evolution in plants.


Assuntos
Oryza/genética , Recombinação Genética , Cromatina/genética , Troca Genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Especificidade da Espécie
18.
Stat Med ; 41(11): 2052-2068, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35165903

RESUMO

A rate ratio (RR) is an important metric for comparing cancer risks among different subpopulations. Inference for RR becomes complicated when populations used for calculating age-standardized cancer rates involve sampling errors, a situation that arises increasingly often when sample surveys must be used to obtain the population data. We compare a few strategies of estimating the standardized RR and propose bias-corrected ratio estimators as well as the corresponding variance estimators and confidence intervals that simultaneously consider the sampling error in estimating populations and the traditional Poisson error in the occurrence of cancer case or death. Performance of the proposed methods is evaluated empirically based on simulation studies. An application to immigration disparities in cancer mortality among Hispanic Americans is discussed. Our simulation studies show that a bias-corrected RR estimator performs the best in reducing the bias without increasing the coefficient of variation; the proposed variance estimators for the RR estimators and associated confidence intervals are fairly accurate. Finding of our application study are both interesting and consistent with the common sense as well as the results of our simulation studies.


Assuntos
Viés de Seleção , Viés , Simulação por Computador , Humanos
19.
Proc Natl Acad Sci U S A ; 116(5): 1679-1685, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30655344

RESUMO

Whole-chromosome painting probes were developed for each of the 10 chromosomes of maize by producing amplifiable libraries of unique sequences of oligonucleotides that can generate labeled probes through transcription reactions. These paints allow identification of individual homologous chromosomes for many applications as demonstrated in somatic root tip metaphase cells, in the pachytene stage of meiosis, and in interphase nuclei. Several chromosomal aberrations were examined as proof of concept for study of various rearrangements using probes that cover the entire chromosome and that label diverse varieties. The relationship of the supernumerary B chromosome and the normal chromosomes was examined with the finding that there is no detectable homology between any of the normal A chromosomes and the B chromosome. Combined with other chromosome-labeling techniques, a complete set of whole-chromosome oligonucleotide paints lays the foundation for future studies of the structure, organization, and evolution of genomes.


Assuntos
Núcleo Celular/genética , Cromossomos de Plantas/genética , Sondas de DNA/genética , Rearranjo Gênico/genética , Aberrações Cromossômicas , Coloração Cromossômica/métodos , Genoma de Planta/genética , Metáfase/genética , Oligonucleotídeos/genética , Transcrição Gênica/genética
20.
J Stat Plan Inference ; 220: 15-23, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37089275

RESUMO

We study variance estimation and associated confidence intervals for parameters characterizing genetic effects from genome-wide association studies (GWAS) in misspecified mixed model analysis. Previous studies have shown that, in spite of the model misspecification, certain quantities of genetic interests are consistently estimable, and consistent estimators of these quantities can be obtained using the restricted maximum likelihood (REML) method under a misspecified linear mixed model. However, the asymptotic variance of such a REML estimator is complicated and not ready to be implemented for practical use. In this paper, we develop practical and computationally convenient methods for estimating such asymptotic variances and constructing the associated confidence intervals. Performance of the proposed methods is evaluated empirically based on Monte-Carlo simulations and real-data application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA