Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 16(10): 1025-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26343537

RESUMO

Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.


Assuntos
DNA Complementar/química , DNA Viral/química , DNA Viral/imunologia , HIV-1/genética , HIV-1/imunologia , Interferon-alfa/imunologia , Nucleotidiltransferases/genética , Animais , Linhagem Celular , Células Cultivadas , DNA Complementar/genética , DNA Complementar/imunologia , DNA Viral/genética , Células HEK293 , Humanos , Imunização , Camundongos
2.
J Biol Chem ; : 107563, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002680

RESUMO

CD8+ T cell immunity, mediated by human leukocyte antigen (HLA) and T cell receptor (TCR), plays a critical role in conferring immune memory and protection against viral pathogens. The emergence of SARS-CoV-2 variants poses a serious challenge to the efficacy of current vaccines. Whereas numerous SARS-CoV-2 mutations associated with immune escape from CD8+ T cells have been documented, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored. Here, we studied an HLA-A24-restricted NYN epitope (Spike448-456) that elicits broad CD8+ T cell responses in COVID-19 patients characterized by a common TCR repertoire. Four natural mutations, N450K, L452Q, L452R, and Y453F, arose within the NYN epitope and have transmitted in certain viral lineages. Our findings indicate that these mutations have minimal impact on the epitope's presentation by cell surface HLA, yet they diminish the affinities of their respective peptide-HLA complexes (pHLAs) for NYN peptide-specific TCRs, particularly L452R and Y453F. Furthermore, we determined the crystal structure of HLA-A24 loaded with the Y453F peptide (NYNYLFRLF), and subsequently a ternary structure of the public TCRNYN-I complexed to the original NYN-HLA-A24 (NYNYLYRLF). Our structural analysis unveiled that despite competent presentation by HLA, the mutant Y453F peptide failed to establish a stable TCR-pHLA ternary complex due to reduced peptide: TCR contacts. This study supports the idea that cellular immunity restriction is an important driving force behind viral evolution.

3.
Semin Immunol ; 55: 101533, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34836774

RESUMO

Responsible for more than 4.9 million deaths so far, COVID-19, caused by SARS-CoV-2, is instigating devastating effects on the global health care system whose impacts could be longer for the years to come. Acquiring a comprehensive knowledge of host-virus interaction is critical for designing effective vaccines and/or drugs. Understanding the evolution of the virus and the impact of genetic variability on host immune evasion and vaccine efficacy is helpful to design novel strategies to minimize the effects of the emerging variants of concern (VOC). Most vaccines under development and/or in current use target the spike protein owning to its unique function of host receptor binding, relatively conserved nature, potent immunogenicity in inducing neutralizing antibodies, and being a good target of T cell responses. However, emerging SARS-CoV-2 strains are exhibiting variability on the spike protein which could affect the efficacy of vaccines and antibody-based therapies in addition to enhancing viral immune evasion mechanisms. Currently, the degree to which mutations on the spike protein affect immunity and vaccination, and the ability of the current vaccines to confer protection against the emerging variants attracts much attention. This review discusses the implications of SARS-CoV-2 spike protein mutations on immune evasion and vaccine-induced immunity and forward directions which could contribute to future studies focusing on designing effective vaccines and/or immunotherapies to consider viral evolution. Combining vaccines derived from different regions of the spike protein that boost both the humoral and cellular wings of adaptive immunity could be the best options to cope with the emerging VOC.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19 , Evasão da Resposta Imune , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Mutação , SARS-CoV-2/genética , Eficácia de Vacinas
4.
Hepatology ; 78(1): 72-87, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626624

RESUMO

BACKGROUND AND AIMS: The innate-like mucosa-associated invariant T (MAIT) cells are enriched in human liver and have been linked to human HCC. However, their contributions to the progression of HCC are controversial due to the heterogeneity of MAIT cells, and new MAIT cell subsets remain to be explored. APPROACH AND RESULTS: Combining single cell RNA sequencing (scRNA-seq) and flow cytometry analysis, we performed phenotypic and functional studies and found that FOXP3 + CXCR3 + MAIT cells in HCC patients were regulatory MAIT cells (MAITregs) with high immunosuppressive potential. These MAITregs were induced under Treg-inducing condition and predominantly from FOXP3 - CXCR3 + MAIT cells, which displayed mild Treg-related features and represented a pre-MAITreg reservoir. In addition, the induction and function of MAITregs were promoted by ß1 adrenergic receptor signaling in pre-MAITregs and MAITregs, respectively. In HCC patients, high proportion of the intratumoral MAITregs inhibited antitumor immune responses and was associated with poor clinical outcomes. CONCLUSIONS: Together, we reveal an immunosuppressive subset of MAIT cells in HCC patients that contributes to HCC progression, and propose a control through neuroimmune crosstalk.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Associadas à Mucosa , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Mucosa , Fatores de Transcrição Forkhead , Receptores Adrenérgicos
5.
Inflamm Res ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907743

RESUMO

BACKGROUND: In recent years, there has been a growing interest in the utilization of biologic therapies for the management of asthma. Both TSLP and IgE are important immune molecules in the development of asthma, and they are involved in the occurrence and regulation of inflammatory response. METHODS: A comprehensive search of PubMed and Web of Science was conducted to gather information on anti-TSLP antibody and anti-IgE antibody. RESULTS: This investigation elucidates the distinct mechanistic roles of Thymic Stromal Lymphopoietin (TSLP) and Immunoglobulin E (IgE) in the pathogenesis of asthma, with a particular emphasis on delineating the therapeutic mechanisms and pharmacological properties of monoclonal antibodies targeting IgE and TSLP. Through a meticulous examination of clinical trials involving paradigmatic agents such as omalizumab and tezepelumab, we offer valuable insights into the potential treatment modalities for diseases with shared immunopathogenic pathways involving IgE and TSLP. CONCLUSION: The overarching objective of this comprehensive study is to delve into the latest advancements in asthma therapeutics and to provide guidance for future investigations in this domain.

6.
Inflamm Res ; 73(1): 35-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147125

RESUMO

OBJECTIVE: Here, we explored the phenotype and function of MAIT cells in the peripheral blood of patients with HSP. METHODS: Blood samples from HSP patients and HDs were assessed by flow cytometry and single-cell RNA sequencing to analyze the proportion, phenotype, and function of MAIT cells. Th-cytokines in the serum of HSP patients were analyzed by CBA. IgA in cocultured supernatant was detected by CBA to analyze antibody production by B cells. RESULTS: The percentage of MAIT cells in HSP patients was significantly reduced compared with that in HDs. Genes related to T cell activation and effector were up-regulated in HSP MAIT cells, indicating a more activated phenotype. In addition, HSP MAIT cells displayed a Th2-like profile with the capacity to produce more IL-4 and IL-5, and IL-4 was correlated with IgA levels in the serum of HSP patients. Furthermore, CD40L was up-regulated in HSP MAIT cells, and CD40L+ MAIT cells showed an increased ability to produce IL-4 and to enhance IgA production by B cells. CONCLUSION: Our data demonstrate that MAIT cells in HSP patients exhibit an activated phenotype. The enhanced IL-4 production and CD40L expression of MAIT cells in HSP patients could take part in the pathogenesis of HSP.


Assuntos
Vasculite por IgA , Células T Invariantes Associadas à Mucosa , Humanos , Formação de Anticorpos , Ligante de CD40 , Imunoglobulina A , Interleucina-4
7.
Mol Cell Probes ; : 101973, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025272

RESUMO

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38183644

RESUMO

BACKGROUND: Zanthoxylum bungeanum (Sichuan pepper; in Chinese) is used as a spice worldwide and is a potentially life-threatening allergenic food source, as first reported by our team in 2005. However, its allergen components are unknown. OBJECTIVE: We aim to identify and characterize its major allergen and determine its cross-reactivities with citrus seeds, pistachios, and cashew seeds. METHODS: Ionic exchange and molecular exclusion chromatography were used to isolate the protein components from Sichuan pepper seed. A protein fraction was characterized by SDS-PAGE, analytical ultracentrifugation, mass spectrometry, and circular dichroism spectroscopy. The coding region of it was amplified from the genome. ELISA and competitive ELISA assays were used to investigate the allergenicity and cross-reactivity of allergens. RESULTS: This protein allergen was around 14 kDa. It was a 2S albumin similar to an α-Amylase inhibitor (AAI) domain-containing protein of Citrus sinensis. Circular dichroism spectroscopy showed its thermal stability was high. A 303 bps DNA sequence of the AAI domain was cloned from the genome of the Sichuan pepper. Competitive ELISA assays showed positive cross-reactivities between this allergen and citrus seeds, pistachios, and cashew seeds. CONCLUSION: A major allergen of around 14 kDa from Sichuan pepper seed was confirmed, which belongs to the 2S albumin of plant seed storage proteins. Based on the nomenclature of the IUIS Subcommittee for Allergen Nomenclature, this allergen is designated as Zan b 1.01. The cross-reactivities were demonstrated between Zan b 1.01 and citrus seeds, pistachios, and cashew seeds.

9.
J Biol Chem ; 298(11): 102561, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198360

RESUMO

Cancer cells have distinctive demands for intermediates from glucose metabolism for biosynthesis and energy in different cell cycle phases. However, how cell cycle regulators and glycolytic enzymes coordinate to orchestrate the essential metabolic processes are still poorly characterized. Here, we report a novel interaction between the mitotic kinase, Aurora A, and the glycolytic enzyme, pyruvate kinase M2 (PKM2), in the interphase of the cell cycle. We found Aurora A-mediated phosphorylation of PKM2 at threonine 45. This phosphorylation significantly attenuated PKM2 enzymatic activity by reducing its tetramerization and also promoted glycolytic flux and the branching anabolic pathways. Replacing the endogenous PKM2 with a nonphosphorylated PKM2 T45A mutant inhibited glycolysis, glycolytic branching pathways, and tumor growth in both in vitro and in vivo models. Together, our study revealed a new protumor function of Aurora A through modulating a rate-limiting glycolytic enzyme, PKM2, mainly during the S phase of the cell cycle. Our findings also showed that although both Aurora A and Aurora B kinase phosphorylate PKM2 at the same residue, the spatial and temporal regulations of the specific kinase and PKM2 interaction are context dependent, indicating intricate interconnectivity between cell cycle and glycolytic regulators.


Assuntos
Leucemia Mieloide Aguda , Piruvato Quinase , Humanos , Piruvato Quinase/metabolismo , Fosforilação , Ácido Pirúvico/metabolismo , Linhagem Celular Tumoral , Glicólise , Divisão Celular
10.
Anal Chem ; 95(33): 12497-12504, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37560897

RESUMO

Recently, our group reported a chemical timer approach to manipulate the onset time of chemiluminescence (CL) emission. However, it is still in the proof-of-concept stage, and its analytical applications have not been explored yet. Nanomaterials have merits of good catalytic effect, large specific surface area, good biocompatibility, and ease of self-assembly, which are ideal for constructing analytical-interfaces for bioassays. Herein, an emission onset time-adjustable chemiluminescent L012-Au/Mn2+ was synthesized for the first time by modifying Mn2+ on the surface of L012-protected gold nanoparticle. By using H2O2 and NaHCO3 as coreactants, L012-Au/Mn2+ could not only generate an ultrastrong and long-time CL emission but also its CL emission onset time could be adjusted by the addition of thiourea, which could effectively eliminate interference from the addition of coreactants, shorten the exposure time, reduce the detection background, and finally achieve high sensitivity CL imaging analysis. On this basis, a label-free CL immunoassay was constructed with a smartphone-based imaging system for high-throughput and sensitive determination of severe acute respiratory syndrome coronavirus 2 nucleocapsid (N) protein. The CL image of the immunoassay with different concentrations of N proteins was captured in one photograph 100 s after the injection of H2O2 with a short exposure time of 0.5 s. The immunoassay showed good linearity over the concentration range of 1 pg/mL to 10 ng/mL with a detection limit of 0.13 pg/mL, which was much lower than the reported CCD imaging detection method. In addition, it showed good selectivity and stability and was successfully applied in serum samples from healthy individuals and COVID-19 rehabilitation patients.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Ouro , SARS-CoV-2 , Peróxido de Hidrogênio , Smartphone , COVID-19/diagnóstico , Medições Luminescentes , Imunoensaio/métodos
11.
Nucleic Acids Res ; 49(5): 2959-2972, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33619523

RESUMO

The interferon gamma-inducible protein 16 (IFI16) and its murine homologous protein p204 function in non-sequence specific dsDNA sensing; however, the exact dsDNA recognition mechanisms of IFI16/p204, which harbour two HIN domains, remain unclear. In the present study, we determined crystal structures of p204 HINa and HINb domains, which are highly similar to those of other PYHIN family proteins. Moreover, we obtained the crystal structure of p204 HINab domain in complex with dsDNA and provided insights into the dsDNA binding mode. p204 HINab binds dsDNA mainly through α2 helix of HINa and HINb, and the linker between them, revealing a similar HIN:DNA binding mode. Both HINa and HINb are vital for HINab recognition of dsDNA, as confirmed by fluorescence polarization assays. Furthermore, a HINa dimerization interface was observed in structures of p204 HINa and HINab:dsDNA complex, which is involved in binding dsDNA. The linker between HINa and HINb reveals dynamic flexibility in solution and changes its direction at ∼90° angle in comparison with crystal structure of HINab:dsDNA complex. These structural information provide insights into the mechanism of DNA recognition by different HIN domains, and shed light on the unique roles of two HIN domains in activating the IFI16/p204 signaling pathway.


Assuntos
DNA/química , Proteínas Nucleares/química , Fosfoproteínas/química , Cristalografia por Raios X , DNA/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica
12.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901737

RESUMO

Since the discovery of fluorescent proteins (FPs), their rich fluorescence spectra and photochemical properties have promoted widespread biological research applications. FPs can be classified into green fluorescent protein (GFP) and its derivates, red fluorescent protein (RFP) and its derivates, and near-infrared FPs. With the continuous development of FPs, antibodies targeting FPs have emerged. The antibody, a class of immunoglobulin, is the main component of humoral immunity that explicitly recognizes and binds antigens. Monoclonal antibody, originating from a single B cell, has been widely applied in immunoassay, in vitro diagnostics, and drug development. The nanobody is a new type of antibody entirely composed of the variable domain of a heavy-chain antibody. Compared with conventional antibodies, these small and stable nanobodies can be expressed and functional in living cells. In addition, they can easily access grooves, seams, or hidden antigenic epitopes on the surface of the target. This review provides an overview of various FPs, the research progress of their antibodies, particularly nanobodies, and advanced applications of nanobodies targeting FPs. This review will be helpful for further research on nanobodies targeting FPs, making FPs more valuable in biological research.


Assuntos
Anticorpos de Domínio Único , Anticorpos Monoclonais , Antígenos , Proteínas de Fluorescência Verde/metabolismo , Cadeias Pesadas de Imunoglobulinas/química , Proteína Vermelha Fluorescente
13.
Biophys J ; 121(24): 4900-4908, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35923103

RESUMO

Zika virus (ZIKV) is a positive-sense single-stranded RNA virus that infects humans and can cause birth defects and neurological disorders. Its non-structural protein 3 (NS3) contains a protease domain and a helicase domain, both of which play essential roles during the viral life cycle. However, it has been shown that ZIKV NS3 has an inherently weak helicase activity, making it unable to unwind long RNA duplexes alone. How this activity is stimulated to process the viral genome and whether the two domains of NS3 are functionally coupled remain unclear. Here, we used optical tweezers to characterize the RNA-unwinding properties of ZIKV NS3-including its processivity, velocity, and step size-at the single-molecule level. We found that external forces that weaken the stability of the duplex RNA substrate significantly enhance the helicase activity of ZIKV NS3. On the other hand, we showed that the protease domain increases the binding affinity of NS3 to RNA but has only a minor effect on unwinding per se. Our findings suggest that the ZIKV NS3 helicase is activated on demand in the context of viral replication, a paradigm that may be generalizable to other flaviviruses.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , RNA Helicases/química , Zika virus/genética , Zika virus/metabolismo , Proteínas não Estruturais Virais/genética , DNA Helicases , Peptídeo Hidrolases/química , RNA
14.
J Cell Sci ; 133(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273068

RESUMO

The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a fascinating cellular machinery endowed with the capacity for rapid proteolytic processing of the pro-inflammatory cytokine IL-1ß and the cell death effector gasdermin D (GSDMD). Although its activity is essential to fight infection and support tissue homeostasis, the inflammasome complex, which consists of the danger sensor NLRP3, the adaptor apoptosis-associated speck-like protein containing a CARD (ASC; also known as PYCARD), caspase-1 and probably other regulatory proteins, also bears considerable potential for detrimental inflammation, as observed in human conditions such as gout, heart attack, stroke and Alzheimer's disease. Thus, multi-layered regulatory networks are required to ensure the fine balance between rapid responsiveness versus erroneous activation (sufficient and temporally restricted versus excessive and chronic activity) of the inflammasome. These involve multiple activation, secretion and cell death pathways, as well as modulation of the subcellular localization of NLRP3, and its structure and activity, owing to post-translational modification by other cellular proteins. Here, we discuss the exciting progress that has recently been made in deciphering the regulation of the NLRP3 inflammasome. Additionally, we highlight open questions and describe areas of research that warrant further exploration to obtain a more comprehensive molecular and cellular understanding of the NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Apoptose , Caspase 1 , Citocinas , Humanos , Inflamação/genética , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
15.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33658349

RESUMO

Cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VHH/nanobody (Nb) from immunized alpacas. Seven RBD-specific Nbs with high stability were identified using phage display. They bind to SARS-CoV-2 RBD with affinity KD ranging from 2.6 to 113 nM, and six of them can block RBD-ACE2 interaction. The fusion of the Nbs with IgG1 Fc resulted in homodimers with greatly improved RBD-binding affinities (KD ranging from 72.7 pM to 4.5 nM) and nanomolar RBD-ACE2 blocking abilities. Furthermore, the fusion of two Nbs with non-overlapping epitopes resulted in hetero-bivalent Nbs, namely aRBD-2-5 and aRBD-2-7, with significantly higher RBD binding affinities (KD of 59.2 pM and 0.25 nM) and greatly enhanced SARS-CoV-2 neutralizing potency. The 50% neutralization dose (ND50) of aRBD-2-5 and aRBD-2-7 was 1.22 ng/mL (∼0.043 nM) and 3.18 ng/mL (∼0.111 nM), respectively. These high-affinity SARS-CoV-2 blocking Nbs could be further developed into therapeutics as well as diagnostic reagents for COVID-19.ImportanceTo date, SARS-CoV-2 has caused tremendous loss of human life and economic output worldwide. Although a few COVID-19 vaccines have been approved in several countries, the development of effective therapeutics, including SARS-CoV-2 targeting antibodies, remains critical. Due to their small size (13-15 kDa), high solubility, and stability, Nbs are particularly well suited for pulmonary delivery and more amenable to engineer into multivalent formats than the conventional antibody. Here, we report a series of new anti-SARS-CoV-2 Nbs isolated from immunized alpaca and two engineered hetero-bivalent Nbs. These potent neutralizing Nbs showed promise as potential therapeutics against COVID-19.

16.
Nat Immunol ; 11(11): 997-1004, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20890285

RESUMO

The detection of intracellular microbial DNA is critical to appropriate innate immune responses; however, knowledge of how such DNA is sensed is limited. Here we identify IFI16, a PYHIN protein, as an intracellular DNA sensor that mediates the induction of interferon-ß (IFN-ß). IFI16 directly associated with IFN-ß-inducing viral DNA motifs. STING, a critical mediator of IFN-ß responses to DNA, was recruited to IFI16 after DNA stimulation. Lowering the expression of IFI16 or its mouse ortholog p204 by RNA-mediated interference inhibited gene induction and activation of the transcription factors IRF3 and NF-κB induced by DNA and herpes simplex virus type 1 (HSV-1). IFI16 (p204) is the first PYHIN protein to our knowledge shown to be involved in IFN-ß induction. Thus, the PYHIN proteins IFI16 and AIM2 form a new family of innate DNA sensors we call 'AIM2-like receptors' (ALRs).


Assuntos
DNA Viral/imunologia , Imunidade Inata , Espaço Intracelular/imunologia , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologia , Animais , Linhagem Celular , Proteínas de Ligação a DNA , Herpesvirus Humano 1/imunologia , Humanos , Interferon beta/imunologia , Interferon beta/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Monócitos/imunologia , Transdução de Sinais
17.
Fish Shellfish Immunol ; 121: 467-477, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35077867

RESUMO

In response to the invasion of exogenous microorganisms, one of the defence strategies of the immune system is to produce antibodies. Cartilaginous fish is among those who evolved the earliest humoral immune system that utilizes immunoglobulin-type antibodies. The cartilaginous fish antibodies fall into three categories: IgW, IgM, and IgNAR. The shark Immunoglobulin Novel Antigen Receptor (IgNAR) constitutes disulfide-bonded dimers of two protein chains, similar to the heavy chain of mammalian IgGs. Shark IgNAR is the primary antibody of a shark's adaptive immune system with a serum concentration of 0.1-1.0 mg/mL. Its structure comprises of one variable (V) domain (VNAR) and five constant (C1 -C5) domains in the secretory form. VNARs are classified into several subclasses based on specific properties such as the quantity and position of additional non-canonical cysteine (Cys) residues in the VNAR. The VDJ recombination in IgNAR comprises various fragments; one variable component, three diverse sections, one joining portion, and a solitary arrangement of constant fragments framed in each IgNAR gene cluster. The re-arrangement happens just inside this gene cluster bringing about a VD1D2D3J segment. Therefore, four re-arrangement procedures create the entire VNAR space. IgNAR antibody can serve as an excellent diagnostic, therapeutic, and research tool because it has a smaller size, high specificity for antigen-binding, and perfect stability. The domain characterization, structural features, types, diversity and therapeutic applications of IgNAR molecules are highlighted in this review. It would be helpful for further research on IgNAR antibodies acting as an essential constituent of the adaptive immune system and a potential therapeutic agent.


Assuntos
Anticorpos , Tubarões , Imunidade Adaptativa , Animais , Anticorpos/imunologia , Receptores de Antígenos , Tubarões/imunologia
18.
Rev Med Virol ; 31(3): e2181, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33152146

RESUMO

This study aimed to assess the diagnostic test accuracy (DTA) of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) serological test methods and the kinetics of antibody positivity. Systematic review and meta-analysis were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline. We included articles evaluating the diagnostic accuracy of serological tests and the kinetics of antibody positivity. MEDLINE through PubMed, Scopus, medRxiv and bioRxiv were sources of articles. Methodological qualities of included articles were appraised using QUADAS-2 while Metandi performs bivariate meta-analysis of DTA using a generalized linear mixed-model approach. Stata 14 and Review Manager 5.3 were used for data analysis. The summary sensitivity/specificity of chemiluminescence immunoassay (CLIA), enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA) were 92% (95% CI: 86%-95%)/99% (CI: 97%-99%), 86% (CI: 82%-89%)/99% (CI: 98%-100%) and 78% (CI: 71%-83%)/98% (95% CI: 96%-99%), respectively. Moreover, CLIA-based assays produced nearly 100% sensitivity within 11-15 days post-symptom onset (DPSO). Based on antibody type, the sensitivity of ELISA-total antibody, CLIA-IgM/G and CLIA-IgG gauged at 94%, 92% and 92%, respectively. The sensitivity of CLIA-RBD assay reached 96%, while LFIA-S demonstrated the lowest sensitivity, 71% (95% CI: 58%-80%). CLIA assays targeting antibodies against RBD considered the best DTA. The antibody positivity rate increased corresponding with DPSO, but there was some decrement when moving from acute phase to convalescent phase of infection. As immunoglobulin isotope-related DTA was heterogeneous, our data have insufficient evidence to recommend CLIA/ELISA for clinical decision-making, but likely to have comparative advantage over RT-qPCR in certain circumstances and geographic regions.


Assuntos
Teste Sorológico para COVID-19/normas , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática/normas , Citometria de Fluxo/normas , Medições Luminescentes/normas , SARS-CoV-2/patogenicidade , Anticorpos Antivirais/sangue , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Teste Sorológico para COVID-19/métodos , Convalescença , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Índice de Gravidade de Doença
19.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142819

RESUMO

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the major target for antibody therapeutics. Shark-derived variable domains of new antigen receptors (VNARs) are the smallest antibody fragments with flexible paratopes that can recognize protein motifs inaccessible to classical antibodies. This study reported four VNARs binders (JM-2, JM-5, JM-17, and JM-18) isolated from Chiloscyllium plagiosum immunized with SARS-CoV-2 RBD. Biolayer interferometry showed that the VNARs bound to the RBD with an affinity KD ranging from 38.5 to 2720 nM, and their Fc fusions had over ten times improved affinity. Gel filtration chromatography revealed that JM-2-Fc, JM-5-Fc, and JM-18-Fc could form stable complexes with RBD in solution. In addition, five bi-paratopic VNARs, named JM-2-5, JM-2-17, JM-2-18, JM-5-18, and JM-17-18, were constructed by fusing two VNARs targeting distinct RBD epitopes based on epitope grouping results. All these bi-paratopic VNARs except for JM-5-18 showed higher RBD binding affinities than its component VNARs, and their Fc fusions exhibited further enhanced binding affinities, with JM-2-5-Fc, JM-2-17-Fc, JM-2-18-Fc, and JM-5-18-Fc having KD values lower than 1 pM. Among these Fc fusions of bi-paratopic VNARs, JM-2-5-Fc, JM-2-17-Fc, and JM-2-18-Fc could block the angiotensin-converting enzyme 2 (ACE2) binding to the RBD of SARS-CoV-2 wildtype, Delta, Omicron, and SARS-CoV, with inhibition rates of 48.9~84.3%. Therefore, these high-affinity VNAR binders showed promise as detectors and therapeutics of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Tubarões , Enzima de Conversão de Angiotensina 2 , Animais , Epitopos , Humanos , Fragmentos de Imunoglobulinas/metabolismo , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
20.
Anal Chem ; 93(42): 14238-14246, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34636246

RESUMO

Direct detection of SARS-CoV-2 in biological specimens is often challenging due to the low abundance of viral components and lack of enough sensitivity. Herein, we developed a new type of chemiluminescent functionalized magnetic nanomaterial for sensitive detection of the SARS-CoV-2 antigen. First, HAuCl4 was reduced by N-(aminobutyl)-N-(ethylisoluminol) (ABEI) in the presence of amino magnetic beads (MB-NH2) to generate ABEI-AuNPs, which were directly assembled on the surface of MB-NH2. Then, Co2+ was modified onto the surface to form MB@ABEI-Au/Co2+ (MAA/Co2+). MAA/Co2+ exhibited good chemiluminescence (CL) and magnetic properties. It was also found that it was easy for the antibody to be connected with MAA/Co2+. Accordingly, MAA/Co2+ was used as a sensing interface to construct a label-free immunoassay for rapid detection of the N protein in SARS-CoV-2. The immunoassay showed a linear range from 0.1 pg/mL to 10 ng/mL and a low detection limit of 69 fg/mL, which was superior to previously reported methods for N protein detection. It also demonstrated good selectivity by virtue of magnetic separation, which effectively removed a sample matrix after immunoreactions. It was successfully applied for the detection of the N protein in spiked human serum and saliva samples. Furthermore, the immunoassay was integrated with an automatic CL analyzer with magnetic separation to detect the N protein in patient serums and rehabilitation patient serums with satisfactory results. Thus, the CL immunoassay without a complicated labeling procedure is sensitive, selective, fast, simple, and cost-effective, which may be used to combat the COVID-19 pandemic. Finally, the CL quenching mechanism of the N protein in the immunoassay was also explored.


Assuntos
COVID-19 , Nanopartículas Metálicas , Ouro , Humanos , Imunoensaio , Limite de Detecção , Luminescência , Medições Luminescentes , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA