Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Genet ; 19(11): e1011031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956204

RESUMO

PIWI proteins and their associated piRNAs act to silence transposons and promote gametogenesis. Murine PIWI proteins MIWI, MILI, and MIWI2 have multiple arginine and glycine (RG)-rich motifs at their N-terminal domains. Despite being known as docking sites for the TDRD family proteins, the in vivo regulatory roles for these RG motifs in directing PIWI in piRNA biogenesis and spermatogenesis remain elusive. To investigate the functional significance of RG motifs in mammalian PIWI proteins in vivo, we genetically engineered an arginine to lysine (RK) point mutation of a conserved N-terminal RG motif in MIWI in mice. We show that this tiny MIWI RG motif is indispensable for piRNA biogenesis and male fertility. The RK mutation in the RG motif disrupts MIWI-TDRKH interaction and impairs enrichment of MIWI to the intermitochondrial cement (IMC) for efficient piRNA production. Despite significant overall piRNA level reduction, piRNA trimming and maturation are not affected by the RK mutation. Consequently, MiwiRK mutant mice show chromatoid body malformation, spermatogenic arrest, and male sterility. Surprisingly, LINE1 transposons are effectively silenced in MiwiRK mutant mice, indicating a LINE1-independent cause of germ cell arrest distinctive from Miwi knockout mice. These findings reveal a crucial function of the RG motif in directing PIWI proteins to engage in efficient piRNA production critical for germ cell progression and highlight the functional importance of the PIWI N-terminal motifs in regulating male fertility.


Assuntos
RNA de Interação com Piwi , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética , Proteínas/metabolismo , Camundongos Knockout , Arginina/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/genética
2.
J Transl Med ; 21(1): 777, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919720

RESUMO

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by abnormal immune responses to various, predominantly bacterial, infections. Different bacterial infections lead to substantial variation in disease manifestation and therapeutic strategies. However, the underlying cellular heterogeneity and mechanisms involved remain poorly understood. METHODS: Multiple bulk transcriptome datasets from septic patients with 12 types of bacterial infections were integrated to identify signature genes for each infection. Signature genes were mapped onto an integrated large single-cell RNA (scRNA) dataset from septic patients, to identify subsets of cells associated with different sepsis types, and multiple omics datasets were combined to reveal the underlying molecular mechanisms. In addition, an scRNA dataset and spatial transcriptome data were used to identify signaling pathways in sepsis-related cells. Finally, molecular screening, optimization, and de novo design were conducted to identify potential targeted drugs and compounds. RESULTS: We elucidated the cellular heterogeneity among septic patients with different bacterial infections. In Escherichia coli (E. coli) sepsis, 19 signature genes involved in epigenetic regulation and metabolism were identified, of which DRAM1 was demonstrated to promote autophagy and glycolysis in response to E. coli infection. DRAM1 upregulation was confirmed in an independent sepsis cohort. Further, we showed that DRAM1 could maintain survival of a pro-inflammatory monocyte subset, C10_ULK1, which induces systemic inflammation by interacting with other cell subsets via resistin and integrin signaling pathways in blood and kidney tissue, respectively. Finally, retapamulin was identified and optimized as a potential drug for treatment of E. coli sepsis targeting the signature gene, DRAM1, and inhibiting E. coli protein synthesis. Several other targeted drugs were also identified in other types of sepsis, including nystatin targeting C1QA in Neisseria sepsis and dalfopristin targeting CTSD in Streptococcus viridans sepsis. CONCLUSION: Our study provides a comprehensive overview of the cellular heterogeneity and underlying mechanisms in septic patients with various bacterial infections, providing insights to inform development of stratified targeted therapies for sepsis.


Assuntos
Infecções Bacterianas , Sepse , Humanos , Escherichia coli , Epigênese Genética , Infecções Bacterianas/genética , Sepse/genética , Sepse/microbiologia , Transcriptoma
3.
Arch Toxicol ; 93(6): 1665-1677, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006824

RESUMO

Tributyltin (TBT), an organotin chemical used as a catalyst and biocide, can stimulate cholesterol efflux in non-steroidogenic cells. Since cholesterol is the first limiting step for sex hormone production, we hypothesized that TBT disrupts intracellular cholesterol transport and impairs steroidogenesis in ovarian theca cells. We investigated TBT's effect on cholesterol trafficking, luteinization, and steroidogenesis in theca cells of five species (human, sheep, cow, pig, and mice). Primary theca cells were exposed to an environmentally relevant dose of TBT (1 or 10 ng/ml) and/or retinoid X receptor (RXR) antagonist. The expression of RXRα in sheep theca cells was knocked down using shRNA. Steroidogenic enzymes, cholesterol transport factors, and nuclear receptors were measured by RT-qPCR and Western blotting, and intracellular cholesterol, progesterone, and testosterone secretion by ELISA. TBT upregulated StAR and ABCA1 in ovine cells, and SREBF1 mRNA in theca cells. TBT also reduced intracellular cholesterol and upregulated ABCA1 protein expression but did not alter testosterone or progesterone production. RXR antagonist and RXRα knockdown demonstrates that TBT's effect is partially through RXR. TBT's effect on ABCA1 and StAR expression was recapitulated in all five species. TBT, at an environmentally relevant dose, stimulates theca cell cholesterol extracellular efflux via the RXR pathway, triggers a compensatory upregulation of StAR that regulates cholesterol transfer into the mitochondria and SREBF1 for de novo cholesterol synthesis. Similar results were obtained in all five species evaluated (human, sheep, cow, pig, and mice) and are supportive of TBT's conserved mechanism of action across mammalian species.


Assuntos
Colesterol/metabolismo , Receptores X de Retinoides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Tecais/efeitos dos fármacos , Células Tecais/metabolismo , Compostos de Trialquitina/toxicidade , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Bovinos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Cultura Primária de Células , Progesterona/metabolismo , Ovinos , Especificidade da Espécie , Suínos , Testosterona/metabolismo
4.
BMC Genomics ; 19(1): 338, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739312

RESUMO

BACKGROUND: The level of fat deposition in carcass is a crucial factor influencing meat quality. Guangling Large-Tailed (GLT) and Small-Tailed Han (STH) sheep are important local Chinese fat-tailed breeds that show distinct patterns of fat depots. To gain a better understanding of fat deposition, transcriptome profiles were determined by RNA-sequencing of perirenal, subcutaneous, and tail fat tissues from both the sheep breeds. The common highly expressed genes (co-genes) in all the six tissues, and the genes that were differentially expressed (DE genes) between these two breeds in the corresponding tissues were analyzed. RESULTS: Approximately 47 million clean reads were obtained for each sample, and a total of 17,267 genes were annotated. Of the 47 highly expressed co-genes, FABP4, ADIPOQ, FABP5, and CD36 were the four most highly transcribed genes among all the known genes related to adipose deposition. FHC, FHC-pseudogene, and ZC3H10 were also highly expressed genes and could, thus, have roles in fat deposition. A total of 2091, 4233, and 4131 DE genes were identified in the perirenal, subcutaneous, and tail fat tissues between the GLT and STH breeds, respectively. Gene Ontology (GO) analysis showed that some DE genes were associated with adipose metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that PPAR signaling pathway and ECM-receptor interaction were specifically enriched. Four genes, namely LOC101102230, PLTP, C1QTNF7, and OLR1 were up-regulated and two genes, SCD and UCP-1, were down-regulated in all the tested tissues of STH. Among the genes involved in ECM-receptor interaction, the genes encoding collagens, laminins, and integrins were quite different depending on the depots or the breeds. In STH, genes such as LAMB3, RELN, TNXB, and ITGA8, were identified to be up regulated and LAMB4 was observed to be down regulated. CONCLUSIONS: This study unravels the complex transcriptome profiles in sheep fat tissues, highlighting the candidate genes involved in fat deposition. Further studies are needed to investigate the roles of the candidate genes in fat deposition and in determining the meat quality of sheep.


Assuntos
Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica , Ovinos/genética , Ovinos/metabolismo , Animais , Anotação de Sequência Molecular , Análise de Sequência de RNA
5.
Biochem Biophys Res Commun ; 495(2): 1769-1774, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29229387

RESUMO

Intramuscular fat is used to determine meat quality in animals; however, factors affecting branched chain amino acid (BCAA) catabolism, which fuels adipogenesis and lipogenesis, remain unclear. To better understand the post-transcriptional influence on BCAA catabolism during adipogenesis, we investigated the role of miR-124-3p. Stromal vascular fraction (SVF) cells were isolated from skeletal muscle of sheep, and induced to differentiate. We determined the roles of miR-124-3p and its predicted target, branched chain keto acid dehydrogenase E1, alpha polypeptide (BCKDHA), in adipogenic differentiation and lipogenesis of SVFs after overexpressing or inhibiting miR-124-3p or BCKDHA, respectively. miR-124-3p altered the luciferase activity of constructs containing 3'-UTR of BCKDHA and the formation of lipid droplets, along with the adipogenic markers and BCAA consumption. Besides, the adipogenic performance and BCAA consumption in BCKDHA-overexpressing or knocked-down SVFs and the expression of adipogenic marker genes were altered. We demonstrate that miR-124-3p is an important factor for adipogenesis and provide insights into the formation of intramuscular fat in animals.


Assuntos
Adipogenia/genética , Aminoácidos de Cadeia Ramificada/metabolismo , MicroRNAs/genética , Ovinos/crescimento & desenvolvimento , Ovinos/genética , Regiões 3' não Traduzidas , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/fisiologia , Animais , Diferenciação Celular/genética , MicroRNAs/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Ovinos/metabolismo
6.
Biol Res ; 51(1): 6, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29482665

RESUMO

BACKGROUND: Cocaine-and amphetamine regulated transcript (CART) is an endogenous neuropeptide, which is widespread in animals, plays a key role in regulation of follicular atresia in cattle and sheep. Among animal ovaries, CART mRNA was firstly found in the cattle ovaries. CART was localized in the antral follicles oocytes, granulosa and cumulus cells by immunohistochemistry and in situ hybridization. Further research found that secretion of E2 was inhibited in granulosa cells with a certain dose of CART, the effect depends on the stage of cell differentiation, suggesting that CART could play a crucial role in regulating follicle atresia. The objective of this study was to characterize the CART expression model and hormones secretion in vivo and vitro in pig follicle granulosa cells, preliminarily studied whether CART have an effect on granulosa cells proliferation and hormones secretion in multiparous animals such as pigs. METHODS: The expression levels of CART mRNA in granulosa cells of different follicles were analyzed using qRT-PCR technology. Immunohistochemistry technology was used to localize CART peptide. Granulosa cells were cultured in medium supplemented with different concentrations of CART and FSH for 168 h using Long-term culture system, and observed using a microscope. The concentration of Estradiol (E2) and progesterone (P) in follicular fluids of different test groups were detected by enzyme linked immunosorbent assay (ELISA). RESULTS: Results showed that expression level of CART mRNA was highest in medium follicles, and significantly higher than that in large and small follicles (P < 0.05). Immunohistochemical results showed that CART were expressed both in granulosa cells and theca cells of large follicles, while CART were detected only in theca cells of medium and small follicles. After the granulosa cells were cultured for 168 h, and found that concentrations of E2 increase with concentrations of follicle-stimulating hormone (FSH) increase when the CART concentration was 0 µM. And the concentration of FSH reached 25 ng/mL, the concentration of E2 is greatest. It shows that the production of E2 needs induction of FSH in granulosa cells of pig ovarian follicles. With the increasing of CART concentrations (0.01, 0.1, 1 µM), E2 concentration has a declining trend, when the FSH concentrations were 25 and 50 ng/mL in the medium, respectively. CONCLUSIONS: These results suggested that CART plays a role to inhibit granulosa cells proliferation and E2 production, which induced by FSH in porcine ovarian follicular granulosa cells in vitro, but the inhibition effect is not significant. So we hypothesis CART maybe not a main local negative regulatory factor during porcine follicular development, which is different from the single fetal animals.


Assuntos
Estradiol/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Folículo Ovariano/metabolismo , Progesterona/metabolismo , Animais , Feminino , Imuno-Histoquímica , Proteínas do Tecido Nervoso/genética , Suínos
7.
Asian-Australas J Anim Sci ; 29(5): 615-23, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26954186

RESUMO

Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

8.
Asian-Australas J Anim Sci ; 29(3): 333-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26950863

RESUMO

Lipins play dual function in lipid metabolism by serving as phosphatidate phosphatase and transcriptional co-regulators of gene expression. Mammalian lipin proteins consist of lipin1, lipin2, and lipin3 and are encoded by their respective genes Lpin1, Lpin2, and Lpin3. To date, most studies are concerned with Lpin1, only a few have addressed Lpin2 and Lpin3. Ontogenetic expression of Lpin2 and Lpin3 and their associations with traits would help to explore their molecular and physiological functions in sheep. In this study, 48 animals with an equal number of males and females each for both breeds of fat-tailed sheep such as Guangling Large Tailed (GLT) and Small Tailed Han (STH) were chosen to evaluate the ontogenetic expression of Lpin2 and Lpin3 from eight different tissues and months of age by quantitative real-time polymerase chain reaction (PCR). Associations between gene expression and slaughter and tail traits were also analyzed. The results showed that Lpin2 mRNA was highly expressed in perirenal and tail fats, and was also substantially expressed in liver, kidney, reproductive organs (testis and ovary), with the lowest levels in small intestine and femoral biceps. Lpin3 mRNA was prominently expressed in liver and small intestine, and was also expressed at high levels in kidney, perirenal and tail fats as well as reproductive organs (testis and ovary), with the lowest level in femoral biceps. Global expression of Lpin2 and Lpin3 in GLT both were significantly higher than those in STH. Spatiotemporal expression showed that the highest levels of Lpin2 expression occurred at 10 months of age in two breeds of sheep, with the lowest expression at 2 months of age in STH and at 8 months of age in GLT. The greatest levels of Lpin3 expression occurred at 4 months of age in STH and at 10 months of age in GLT, with the lowest expression at 12 months of age in STH and at 8 months of age in GLT. Breed and age significantly influenced the tissue expression patterns of Lpin2 and Lpin3, respectively, and sex significantly influenced the spatiotemporal expression patterns of Lpin3. Meanwhile, Lpin2 and Lpin3 mRNA expression both showed significant correlations with slaughter and tail traits, and the associations appear to be related with the ontogenetic expression as well as the potential functions of lipin2 and lipin3 in sheep.

9.
Nat Commun ; 15(1): 2343, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491008

RESUMO

The intermitochondrial cement (IMC) and chromatoid body (CB) are posited as central sites for piRNA activity in mice, with MIWI initially assembling in the IMC for piRNA processing before translocating to the CB for functional deployment. The regulatory mechanism underpinning MIWI translocation, however, has remained elusive. We unveil that piRNA loading is the trigger for MIWI translocation from the IMC to CB. Mechanistically, piRNA loading facilitates MIWI release from the IMC by weakening its ties with the mitochondria-anchored TDRKH. This, in turn, enables arginine methylation of MIWI, augmenting its binding affinity for TDRD6 and ensuring its integration within the CB. Notably, loss of piRNA-loading ability causes MIWI entrapment in the IMC and its destabilization in male germ cells, leading to defective spermatogenesis and male infertility in mice. Collectively, our findings establish the critical role of piRNA loading in MIWI translocation during spermatogenesis, offering new insights into piRNA biology in mammals.


Assuntos
Proteínas Argonautas , Grânulos de Ribonucleoproteínas de Células Germinativas , RNA de Interação com Piwi , Animais , Masculino , Camundongos , Proteínas Argonautas/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mitocôndrias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética , Testículo/metabolismo
10.
Front Immunol ; 14: 1231898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701433

RESUMO

Background: RNA methylation is closely involved in immune regulation, but its role in sepsis remains unknown. Here, we aim to investigate the role of RNA methylation-associated genes (RMGs) in classifying and diagnosing of sepsis. Methods: Five types of RMGs (m1A, m5C, m6Am, m7G and Ψ) were used to identify sepsis subgroups based on gene expression profile data obtained from the GEO database (GSE57065, GSE65682, and GSE95233). Unsupervised clustering analysis was used to identify distinct RNA modification subtypes. The CIBERSORT, WGCNA, GO and KEGG analysis were performed to explore immune infiltration pattern and biological function of each cluster. RF, SVM, XGB, and GLM algorithm were applied to identify the diagnostic RMGs in sepsis. Finally, the expression levels of the five key RMGs were verified by collecting PBMCs from septic patients using qRT-PCR, and their diagnostic efficacy for sepsis was verified in combination with clinical data using ROC analysis. Results: Sepsis was divided into three subtypes (cluster 1 to 3). Cluster 1 highly expressed NSUN7 and TRMT6, with the characteristic of neutrophil activation and upregulation of MAPK signaling pathways. Cluster 2 highly expressed NSUN3, and was featured by the regulation of mRNA stability and amino acid metabolism. NSUN5 and NSUN6 were upregulated in cluster 3 which was involved in ribonucleoprotein complex biogenesis and carbohydrate metabolism pathways. In addition, we identified that five RMGs (NSUN7, NOP2, PUS1, PUS3 and FTO) could function as biomarkers for clinic diagnose of sepsis. For validation, we determined that the relative expressions of NSUN7, NOP2, PUS1 and PUS3 were upregulated, while FTO was downregulated in septic patients. The area under the ROC curve (AUC) of NSUN7, NOP2, PUS1, PUS3 and FTO was 0.828, 0.707, 0.846, 0.834 and 0.976, respectively. Conclusions: Our study uncovered that dysregulation of RNA methylation genes (m1A, m5C, m6Am, m7G and Ψ) was closely involved in the pathogenesis of sepsis, providing new insights into the classification of sepsis endotypes. We also revealed that five hub RMGs could function as novel diagnostic biomarkers and potential targets for treatment.


Assuntos
Sepse , Humanos , Metilação , Sepse/diagnóstico , Sepse/genética , Algoritmos , Biomarcadores , RNA , Dioxigenase FTO Dependente de alfa-Cetoglutarato , tRNA Metiltransferases
11.
EBioMedicine ; 90: 104507, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36893588

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease affecting multiple organs and tissues with high cellular heterogeneity. CD8+ T cell activity is involved in the SLE pathogenesis. However, the cellular heterogeneity and the underlying mechanisms of CD8+ T cells in SLE remain to be identified. METHODS: Single-cell RNA sequencing (scRNA-seq) of PBMCs from a SLE family pedigree (including 3 HCs and 2 SLE patients) was performed to identify the SLE-associated CD8+ T cell subsets. Flow cytometry analysis of a SLE cohort (including 23 HCs and 33 SLE patients), qPCR analysis of another SLE cohort (including 30 HCs and 25 SLE patients) and public scRNA-seq datasets of autoimmune diseases were employed to validate the finding. Whole-exome sequencing (WES) of this SLE family pedigree was used to investigate the genetic basis in dysregulation of CD8+ T cell subsets identified in this study. Co-culture experiments were performed to analyze the activity of CD8+ T cells. FINDINGS: We elucidated the cellular heterogeneity of SLE and identified a new highly cytotoxic CD8+ T cell subset, CD161-CD8+ TEMRA cell subpopulation, which was remarkably increased in SLE patients. Meanwhile, we discovered a close correlation between mutation of DTHD1 and the abnormal accumulation of CD161-CD8+ TEMRA cells in SLE. DTHD1 interacted with MYD88 to suppress its activity in T cells and DTHD1 mutation promoted MYD88-dependent pathway and subsequently increased the proliferation and cytotoxicity of CD161-CD8+ TEMRA cells. Furthermore, the differentially expressed genes in CD161-CD8+ TEMRA cells displayed a strong out-of-sample prediction for case-control status of SLE. INTERPRETATION: This study identified DTHD1-associated expansion of CD161-CD8+ TEMRA cell subpopulation is critical for SLE. Our study highlights genetic association and cellular heterogeneity of SLE pathogenesis and provides a mechanistical insight into the diagnosis and treatment of SLE. FUNDINGS: Stated in the Acknowledgements section of the manuscript.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Linfócitos T CD8-Positivos , Fator 88 de Diferenciação Mieloide/metabolismo , Subpopulações de Linfócitos T , Linfócitos T Citotóxicos/metabolismo , Lúpus Eritematoso Sistêmico/genética , Doenças Autoimunes/metabolismo
12.
Theriogenology ; 187: 74-81, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512514

RESUMO

NOTCH and bone morphogenetic protein (BMP)/SMAD signaling play key regulatory roles in mammalian ovarian development. The study aimed to investigate interregulatory mechanisms between NOTCH2 and BMP4/SMAD signaling pathways in bovine follicular granulosa cells (GCs). The results showed that NOTCH2 silence reduced the mRNA expression of SMAD1, SMAD5, SMAD8 (also known as SMAD9) and Mg2+/Mn2+- dependent Protein Phosphatase 1A (PPM1A), which are effectors of BMP/SMAD signaling pathway (P < 0.01). Overexpressing NOTCH2 intracellular sequence increased the mRNA expression of BMPR1A, SMAD1, SMAD4, SMAD5, SMAD8 and PPM1A (P < 0.01). Meanwhile, treating GCs with BMP4 inhibited the mRNA expression of its downstream gene SMAD1 and steroidogenesis genes STAR and CYP11A1 in the presence of follicular stimulating hormone (FSH) (P < 0.01). Moreover, BMP4 inhibited the mRNA expression of NOTCH signaling pathway target gene HES1 (P < 0.05), while the increase in NOTCH2 may be due to negative feedback of HES1. By and large, these results indicated that NOTCH2 up-regulated key genes of BMP/SMAD signaling in bovine follicle GCs, while BMP4 inhibited its downstream signaling factors and NOTCH signaling pathway target gene HES1. This study suggests there are complex synergistic and antagonistic effects between the two signaling pathways, which jointly participate in regulating bovine follicular development through regulating follicular GCs.


Assuntos
Células da Granulosa , Transdução de Sinais , Animais , Bovinos , Células Cultivadas , Feminino , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/fisiologia , Mamíferos , Fosfoproteínas Fosfatases , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
13.
Pregnancy Hypertens ; 27: 181-188, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35124425

RESUMO

Preeclampsia complicates 2-8% of pregnancies and is associated with prematurity and intrauterine growth restriction. Cholesterol and sterol transport is a key function of the placenta and it is elicited through ATP binding cassette (ABC) transporters. ABCA1 expression changes during trophoblast cell fusion, a process required to form the placental syncytium that enables maternal-fetal nutrient transfer. ABCA1 expression is dysregulated in preeclamptic placentas. But whether ABC transporters expression during trophoblast fusion is disrupted in preeclampsia remains unknown. We investigated if cholesterol and sterol ABC transporters are altered in term and preterm preeclampsia placentas and during human cytotrophoblast syncytialization. Human placental biopsies were collected from healthy term (≥37 weeks; n = 11) and term preeclamptic (≥36 6/7 weeks; n = 8) and pre-term preeclamptic (28-35 weeks; n = 8) pregnancies. Both, protein and mRNA expression for ABCA1, ABCG1, ABCG5, and ABCG8 were evaluated. Primary cytotrophoblasts isolated from a subset of placentas were induced to syncytialize for 96 h and ABCA1, ABCG1 and ABCG8 mRNA expression evaluated at 0 h and 96 h. Protein and gene expression of ABC transporters were not altered in preeclamptic placentas. In the healthy Term group, ABCA1 expression was similar before and after syncytialization. After 96 h of syncytialization, mRNA expression of ABCA1 and ABCG1 increased significantly, while ABCG8 decreased significantly in term-preeclampsia, but not pre-term preeclampsia. While placental expression of ABCA1 and ABCG1 remained unaltered in term preeclampsia, the disruption in their dynamic expression pattern during cytotrophoblast syncytialization suggests that cholesterol transport may contribute to the pathophysiologic role of the placenta in preeclampsia.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Estudos de Casos e Controles , Colesterol/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Masculino , Gravidez , RNA Mensageiro/metabolismo
14.
Theriogenology ; 171: 55-63, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023619

RESUMO

Notch signaling pathway plays an important regulatory role in the development of mammalian follicles. This study aimed to explore the effect of Notch2 on the function of bovine follicles luteinized granulosa cells (LGCs). We detected that the coding sequence (CDS) of bovine Notch2 gene is 7416 bp, encoding 2471 amino acids (AA). The homology of Notch2 AA sequence between bovine and other species is 86.04%-98.75%, indicating high conservatism. Immunohistochemistry found that Notch2 receptor and its ligand Jagged2 localize in granulosa cells (GCs) and theca cells in bovine antral follicles. And immunofluorescence found that positive signals of Notch2 and Jagged2 overlap in bovine LGCs, speculating that Notch2 receptor may react with Jagged2 ligand to activate Notch signaling pathway and play an important role in bovine LGCs. To further investigate the function of Notch2, Notch2 gene was silenced by short hairpin RNA (shRNA) and CCK-8 analysis showed that the proliferation rate of LGCs was downregulated significantly (P < 0.01). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that the mRNA expression of apoptosis related gene Bcl-2/Bax decreased (P < 0.01) and Caspase3 increased (P < 0.05), cell cycle related gene CyclinD2/CDK4 complex decreased (P < 0.01) and P21 increased (P < 0.05), steroidogenesis gene STAR and 3ß-HSD decreased (P < 0.01) while CYP19A1 and CYP11A1 had no significant difference (P > 0.05). In addition, Enzyme-linked immunosorbent assay (ELISA) showed that there was no difference in estradiol (E2) secretion (P > 0.05) while the progesterone (P4) secretion decreased (P < 0.01). In conclusion, Notch2 plays an important role in regulating bovine LGCs development.


Assuntos
Células da Granulosa , Receptor Notch2 , Animais , Apoptose , Bovinos , Proliferação de Células , Estradiol , Feminino , Progesterona , Receptor Notch2/genética , Células Tecais
15.
Toxicol Sci ; 178(1): 189-200, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750123

RESUMO

Bisphenols are endocrine disrupting chemicals to which humans are ubiquitously exposed to. Prenatal bisphenol A exposure can lead to insulin resistance. However, the metabolic effects of other emerging bisphenols, such as bisphenol S (BPS) and bisphenol F (BPF), are less understood. Because the skeletal muscle is the largest of the insulin target tissues, the goal of this study was to evaluate the effects of 2 emerging bisphenols (BPS and BPF) on cytotoxicity, proliferation, myogenic differentiation, and insulin responsiveness in skeletal muscle cells. We tested this using a dose-response approach in C2C12 mouse and L6 rat myoblast cell lines. The results showed that C2C12 mouse myoblasts were more susceptible to bisphenols compared with L6 rat myoblasts. In both cell lines, bisphenol A was more cytotoxic, followed by BPF and BPS. C2C12 myoblast proliferation was higher upon BPF exposure at the 10-4 M dose and the fusion index was increased after exposure to either BPF or BPS at doses over 10-10 M. Exposure to BPS and BPF also reduced baseline expression of p-AKT (Thr) and p-GSK-3ß, but not downstream effectors such as mTOR and glucose transporter-4. In conclusion, at noncytotoxic doses, BPS and BPF can alter myoblast cell proliferation, differentiation, and partially modulate early effectors of the insulin receptor signaling pathway. However, BPS or BPF short-term exposure evaluated here does not result in impaired insulin responsiveness.


Assuntos
Compostos Benzidrílicos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Células Musculares/efeitos dos fármacos , Fenóis/toxicidade , Receptor de Insulina/metabolismo , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta , Insulina , Camundongos , Ratos , Transdução de Sinais
16.
Anim Reprod Sci ; 221: 106604, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32980650

RESUMO

Forkhead boxO (FOXO) transcription factors regulate diverse biological processes, including cellular metabolism, cell apoptosis, and the cell cycle. Results from several studies indicate FOXO1 regulates different granulosa cell (GC) pathways involved in proliferation, survival and differentiation. Functions and mechanisms of FOXO1 regulation of sheep GCs remain unclear. This study was conducted to analyze the function of FOXO1 in regulation of sheep GCs. In this study, the 1827 bp sheep FOXO1 coding sequence was cloned from sheep GCs. Multiple sequence alignment and phylogenetic analysis indicated that the FOXO1 protein sequence is highly homologous to FOXO1 protein sequences from other species. The results obtained from using CCK-8 assays indicated sheep GC proliferation increased when there was suppression of FOXO1 gene expression. When there was induced expression of the FOXO1 gene in sheep GCs, there was a resulting increased abundance of P21 and P27 mRNA transcript, whereas suppression of the FOXO1 gene expression had the opposite effect. Furthermore, the relative abundance in vitro of apoptosis-related protein mRNA transcripts (caspase3, caspase8, caspase9, Bax/Bcl-2) was markedly increased or decreased when there was induction or suppression of FOXO1 gene expression, respectively,(P < 0.05). Induction of FOXO1 gene expression resulted in an increase in abundance of steroidogenic protein mRNA transcripts (CYP11A1, 3ß-HSD), while suppression of FOXO1 gene expresion resulted in a decrease abundance of the CYP11A1, STAR mRNA transcripts. Results from the present study indicated that FOXO1 inhibited the proliferation of sheep GCs and affected mRNA transcript abundance for proteins involved in regulation of apoptosis, the cell cycle and steroidogenesis.


Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Proteína Forkhead Box O1/metabolismo , Células da Granulosa/metabolismo , Ovinos/fisiologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Filogenia , RNA Mensageiro , Ovinos/genética
17.
Toxicol Sci ; 172(2): 292-302, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501865

RESUMO

Gestational exposure to bisphenol A (BPA) can lead to offspring insulin resistance. However, despite the role that the skeletal muscle plays in glucose homeostasis, it remains unknown whether gestational exposure to BPA, or its analog bisphenol S (BPS), impairs skeletal muscle development. We hypothesized that gestational exposure to BPA or BPS will impair fetal muscle development and lead to muscle-specific insulin resistance. To test this, pregnant sheep (n = 7-8/group) were exposed to BPA or BPS from gestational day (GD) 30 to 100. At GD120, fetal skeletal muscle was harvested to evaluate fiber size, fiber type, and gene and protein expression related to myogenesis, fiber size, fiber type, and inflammation. Fetal primary myoblasts were isolated to evaluate proliferation and differentiation. In fetal skeletal muscle, myofibers were larger in BPA and BPS groups in both females and males. BPA females had higher MYH1 (reflective of type-IIX fast glycolytic fibers), whereas BPS females had higher MYH2 and MYH7, and higher myogenic regulatory factors (Myf5, MyoG, MyoD, and MRF4) mRNA expression. No differences were observed in males. Myoblast proliferation was not altered in gestationally BPA- or BPS-exposed myoblasts, but upon differentiation, area and diameter of myotubes were larger independent of sex. Females had larger myofibers and myotubes than males in all treatment groups. In conclusion, gestational exposure to BPA or BPS does not result in insulin resistance in fetal myoblasts but leads to fetal fiber hypertrophy in skeletal muscle independent of sex and alters fiber type distribution in a sex-specific manner.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Sulfonas/toxicidade , Animais , Compostos Benzidrílicos/sangue , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Disruptores Endócrinos/sangue , Feminino , Idade Gestacional , Hipertrofia , Células Musculares/efeitos dos fármacos , Células Musculares/patologia , Músculo Esquelético/embriologia , Músculo Esquelético/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/patologia , Fenóis/sangue , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Cultura Primária de Células , Ovinos , Sulfonas/sangue
18.
Anim Sci J ; 89(6): 858-867, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29575645

RESUMO

The differentiation of preadipocytes into adipose tissues is tightly regulated by various factors including microRNAs and cytokines. This article aims to study the effect of miR-330-5p on expression of BCAT2 in ovine preadipocytes. Ovine preadipocytes were isolated, and we found that the miR-330-5p expression decreased gradually during the early differentiation of ovine preadipocytes, while BCAT2 expression increased. BCAT2 was identified as a direct target of miR-330-5p, ectopic expression of miR-330-5p could change the expression of both BCAT2 mRNA and protein. Silencing BCAT2 had the same inhibition effects as overexpressing miR-330-5p on the preadipocyte differentiation, but overexpressing BCAT2 had the converse effects. Taken together, we demonstrated that miR-330-5p is a negative regulator of differentiation by targeting BCAT2, and clarified the role of BCAT2 and miR-330-5p during preadipocyte differentiation.


Assuntos
Adipócitos/citologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , MicroRNAs/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Transaminases/metabolismo , Tecido Adiposo , Animais , Células Cultivadas , Antígenos de Histocompatibilidade Menor/genética , RNA Mensageiro/metabolismo , Ovinos , Transaminases/genética
19.
Anim Reprod Sci ; 181: 69-78, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400072

RESUMO

The Notch signaling pathway regulates cell proliferation, differentiation and apoptosis involved in development of the organs and tissues such as nervous system, cartilage, lungs, kidneys and prostate as well as the ovarian follicles. This study aimed to investigate the mRNA expression and localization of NOTCH2, as the key factor in Notch signaling pathway. This was determined by PCR, real-time PCR and immunohistochemistry. Additionally, the effects of inhibiting Notch signaling pathway with different concentrations (5µM, 10µM and 20µM) of N-[N-(3, 5-Difuorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor of Notch signaling pathway, on ovine granulosa cells was determined in vitro by detecting estradiol production using enzyme linked immunosorbent assay and expressions of the genes related to the cell cycle and apoptosis using real-time polymerase chain reaction (PCR). NOTCH2, the key member of Notch signaling pathway, was found in ovine follicles, and the expression of NOTCH2 mRNA was highest in the theca cells of the follicles in medium sizes (3-5mm in diameter) and granulosa cells of the follicles in large sizes (>5mm in diameter). Immunohistochemical results demonstrated that NOTCH2 protein was expressed in granulosa cells of preantral follicles, in both granulosa cells and theca cells of antral follicles. Compared with DAPT-treated groups, the control group had a higher number of granulosa cells (P<0.05) and a higher estradiol production (P<0.05). Compared with the control group, the mRNA abundances of HES1, MYC, BAX, BCL2 and CYP19A1 in DAPT-treated groups was lower (P<0.05), respectively; whereas, the expression of CCND2, CDKN1A and TP53 mRNA showed no remarkable difference compared with control group. Collectively, Notch signaling pathway could be involved in the ovine follicular development by regulating the growth and estradiol production of granulosa cells.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células da Granulosa/fisiologia , Receptor Notch2/metabolismo , Ovinos/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Diaminas/administração & dosagem , Diaminas/farmacologia , Relação Dose-Resposta a Droga , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Receptor Notch2/genética , Células Tecais/fisiologia , Tiazóis/administração & dosagem , Tiazóis/farmacologia
20.
Biol. Res ; 51: 6, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888431

RESUMO

Abstract Background Cocaine-and amphetamine regulated transcript (CART) is an endogenous neuropeptide, which is widespread in animals, plays a key role in regulation of follicular atresia in cattle and sheep. Among animal ovaries, CART mRNA was firstly found in the cattle ovaries. CART was localized in the antral follicles oocytes, granulosa and cumulus cells by immunohistochemistry and in situ hybridization. Further research found that secretion of E2 was inhibited in granulosa cells with a certain dose of CART, the effect depends on the stage of cell differentiation, suggesting that CART could play a crucial role in regulating follicle atresia. The objective of this study was to characterize the CART expression model and hormones secretion in vivo and vitro in pig follicle granulosa cells, preliminarily studied whether CART have an effect on granulosa cells proliferation and hormones secretion in multiparous animals such as pigs. Methods The expression levels of CART mRNA in granulosa cells of different follicles were analyzed using qRT-PCR technology. Immunohistochemistry technology was used to localize CART peptide. Granulosa cells were cultured in medium supplemented with different concentrations of CART and FSH for 168 h using Long-term culture system, and observed using a microscope. The concentration of Estradiol (E2) and progesterone (P) in follicular fluids of different test groups were detected by enzyme linked immunosorbent assay (ELISA). Results Results showed that expression level of CART mRNA was highest in medium follicles, and significantly higher than that in large and small follicles (P < 0.05). Immunohistochemical results showed that CART were expressed both in granulosa cells and theca cells of large follicles, while CART were detected only in theca cells of medium and small follicles. After the granulosa cells were cultured for 168 h, and found that concentrations of E2 increase with concentrations of follicle-stimulating hormone (FSH) increase when the CART concentration was 0 μM. And the concentration of FSH reached 25 ng/mL, the concentration of E2 is greatest. It shows that the production of E2 needs induction of FSH in granulosa cells of pig ovarian follicles. With the increasing of CART concentrations (0.01, 0.1, 1 μM), E2 concentration has a declining trend, when the FSH concentrations were 25 and 50 ng/mL in the medium, respectively. Conclusions These results suggested that CART plays a role to inhibit granulosa cells proliferation and E2 production, which induced by FSH in porcine ovarian follicular granulosa cells in vitro, but the inhibition effect is not significant. So we hypothesis CART maybe not a main local negative regulatory factor during porcine follicular development, which is different from the single fetal animals.


Assuntos
Animais , Feminino , Progesterona/metabolismo , Estradiol/metabolismo , Folículo Ovariano/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Suínos , Imuno-Histoquímica , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA