Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(13): 5894-5901, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368991

RESUMO

Oxidation of transition metal dichalcogenides (TMDs) occurs readily under a variety of conditions. Therefore, understanding the oxidation processes is necessary for successful TMD handling and device fabrication. Here, we investigate atomic-scale oxidation mechanisms of the most widely studied TMD, MoS2. We find that thermal oxidation results in α-phase crystalline MoO3 with sharp interfaces, voids, and crystallographic alignment with the underlying MoS2. Experiments with remote substrates prove that thermal oxidation proceeds via vapor-phase mass transport and redeposition, a challenge to forming thin, conformal films. Oxygen plasma accelerates the kinetics of oxidation relative to the kinetics of mass transport, forming smooth and conformal oxides. The resulting amorphous MoO3 can be grown with subnanometer to several-nanometer thickness, and we calibrate the oxidation rate for different instruments and process parameters. Our results provide quantitative guidance for managing both the atomic scale structure and thin-film morphology of oxides in the design and processing of TMD devices.

2.
Nano Lett ; 20(12): 8592-8599, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33180506

RESUMO

A thorough understanding of native oxides is essential for designing semiconductor devices. Here, we report a study of the rate and mechanisms of spontaneous oxidation of bulk single crystals of ZrSxSe2-x alloys and MoS2. ZrSxSe2-x alloys oxidize rapidly, and the oxidation rate increases with Se content. Oxidation of basal surfaces is initiated by favorable O2 adsorption and proceeds by a mechanism of Zr-O bond switching, that collapses the van der Waals gaps, and is facilitated by progressive redox transitions of the chalcogen. The rate-limiting process is the formation and out-diffusion of SO2. In contrast, MoS2 basal surfaces are stable due to unfavorable oxygen adsorption. Our results provide insight and quantitative guidance for designing and processing semiconductor devices based on ZrSxSe2-x and MoS2 and identify the atomistic-scale mechanisms of bonding and phase transformations in layered materials with competing anions.

3.
Small ; 10(4): 653-9, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24106040

RESUMO

Efficient room temperature NIR detection with sufficient current gain is made with a solution-processed networked SWNT FET. The high performance NIR-FET with significantly enhanced photocurrent by more than two orders of magnitude compared to dark current in the depleted state is attributed to multiple Schottky barriers in the network, each of which absorb NIR and effectively separate photocarriers to corresponding electrodes.

4.
ACS Nano ; 16(6): 9472-9478, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35709492

RESUMO

van der Waals (vdW) layered chalcogenides have strongly direction-dependent (i.e., anisotropic) properties that make them interesting for photonic and optoelectronic applications. Orthorhombic tin selenide (α-SnSe) is a triaxial vdW material with strong optical anisotropy within layer planes, which has motivated studies of optical phase and domain switching. As with every vdW material, controlling the orientation of crystal domains during growth is key to reliably making wafer-scale, high-quality thin films, free from twin boundaries. Here, we demonstrate a fast optical method to quantify domain orientation in SnSe thin films made by molecular beam epitaxy (MBE). The in-plane optical anisotropy results in white-light being reflected into distinct colors for certain optical polarization angles and the color depends on domain orientation. We use our method to confirm a high density of twin boundaries in SnSe epitaxial films on MgO substrates, with square symmetry that results in degeneracy between SnSe 90° domain orientations. We then demonstrate that growing on a-plane sapphire, with rectangular lattice-matched symmetry that breaks the SnSe domain degeneracy, results in single-crystalline films with one preferred orientation. Our SnSe bottom-up film synthesis by MBE enables future applications of this vdW material that is particularly difficult to process by top-down methods. Our optical metrology is fast and can apply to all triaxial vdW materials.

5.
ACS Nano ; 7(12): 10809-17, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24279731

RESUMO

Electroluminescent (EL) devices operating at alternating current (AC) electricity have been of great interest due to not only their unique light emitting mechanism of carrier generation and recombination but also their great potential for applications in displays, sensors, and lighting. Despite great success of AC-EL devices, most device properties are far from real implementation. In particular, the current state-of-the art brightness of the solution-processed AC-EL devices is a few hundred candela per square meter (cd m(-2)) and most of the works have been devoted to red and white emission. In this manuscript, we report extremely bright full color polymer AC-EL devices with brightness of approximately 2300, 6000, and 5000 cd m(-2) for blue (B), green (G), and red (R) emission, respectively. The high brightness of blue emission was attributed to individually networked multiwalled carbon nanotubes (MWNTs) for the facile carrier injection as well as self-assembled block copolymer micelles for suppression of interchain nonradiative energy quenching. In addition, effective FRET from a solution-blended thin film of B-G and B-G-R fluorescent polymers led to very bright green and red EL under AC voltage, respectively. The solution-processed AC-EL device also worked properly with vacuum-free Ag paste on a mechanically flexible polymer substrate. Finally, we successfully demonstrated the long-term operation reliability of our AC-EL device for over 15 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA