Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 4(1): e0002861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289918

RESUMO

Vibrio cholerae remains a notable public health challenge across Malaysia. Although the Malaysian state of Sabah is considered a cholera-affected area, gaps remain in understanding the epidemiological trends and spatial distribution of outbreaks. Therefore, to determine longitudinal and spatial trends in cholera cases data were obtained from the Sabah State Health Department for all notified cases of cholera between 2005-2020. A cholera outbreak is defined as one or more confirmed cases in a single locality with the evidence of local transmission. All records were geolocated to village level. Satellite-derived data and generalised linearized models were used to assess potential risk factors, including population density, elevation, and distance to the sea. Spatiotemporal clustering of reported cholera cases and zones of increased cholera risk were evaluated using the tau statistic (τ) at 550m, 5km and 10km distances. Over a 15-year period between 2005-2020, 2865 cholera cases were recorded in Sabah, with a mean incidence rate of 5.6 cases per 100,000 (95% CI: 3.4-7.9). From 2015-2020, 705 symptomatic cases and 727 asymptomatic cases were reported. Symptomatic cases primarily occurred in local Malaysian populations (62.6%, 441/705) and in children and adolescents under 15-years old (49.4%, 348/705). On average, cases were reported in areas with low population density (19.45 persons/km2), low elevations (19.45m) and near coastal areas. Spatiotemporal clustering of cholera cases was identified up to 3.5km, with increased village-level cholera risk within 500m and 5 days of initial case presentation to a health facility (Risk Ratio = 9.7, 95% CI: 7.5-12.4). Cholera incidence has high spatial and temporal heterogeneity within Sabah, with some districts experiencing repeated outbreaks. Cholera cases clustered across space and time, with village-level risk of cholera highest within 5 days and within close proximity to primary case villages, suggesting local transmission.

2.
Elife ; 122024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753426

RESUMO

Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.


Zoonotic diseases are infectious diseases that are transmitted from animals to humans. For example, the malaria-causing parasite Plasmodium knowlesi can be transmitted from monkeys to humans through mosquitos that have previously fed on infected monkeys. In Malaysia, progress towards eliminating malaria is being undermined by the rise of human incidences of 'monkey malaria', which has been declared a public health threat by The World Health Organisation. In humans, cases of monkey malaria are higher in areas of recent deforestation. Changes in habitat may affect how monkeys, insects and humans interact, making it easier for diseases like malaria to pass between them. Deforestation could also change the behaviour of wildlife, which could lead to an increase in infection rates. For example, reduced living space increases contact between monkeys, or it may prevent behaviours that help animals to avoid parasites. Johnson et al. wanted to investigate how the prevalence of malaria in monkeys varies across Southeast Asia to see whether an increase of Plasmodium knowlesi in primates is linked to changes in the landscape. They merged the results of 23 existing studies, including data from 148 sites and 6322 monkeys to see how environmental factors like deforestation influenced the amount of disease in different places. Many previous studies have assumed that disease prevalence is high across all macaques, monkey species that are considered pests, and in all places. But Johnson et al. found that disease rates vary widely across different regions. Overall disease rates in monkeys are lower than expected (only 12%), but in regions with less forest or more 'fragmented' forest areas, malaria rates are higher. Areas with a high disease rate in monkeys tend to further coincide with infection hotspots for humans. This suggests that deforestation may be driving malaria infection in monkeys, which could be part of the reason for increased human infection rates. Johnsons et al.'s study has provided an important step towards better understanding the link between deforestation and the levels of monkey malaria in humans living nearby. Their study provides important insights into how we might find ways of managing the landscape better to reduce health risks from wildlife infection.


Assuntos
Malária , Plasmodium knowlesi , Primatas , Zoonoses , Animais , Humanos , Sudeste Asiático/epidemiologia , Ecossistema , Malária/epidemiologia , Malária/transmissão , Malária/parasitologia , Prevalência , Doenças dos Primatas/epidemiologia , Doenças dos Primatas/parasitologia , Doenças dos Primatas/transmissão , Primatas/parasitologia , Zoonoses/epidemiologia , Zoonoses/parasitologia , Zoonoses/transmissão
3.
Trends Parasitol ; 39(5): 386-399, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842917

RESUMO

Emerging infectious diseases continue to pose a significant burden on global public health, and there is a critical need to better understand transmission dynamics arising at the interface of human activity and wildlife habitats. Passive acoustic monitoring (PAM), more typically applied to questions of biodiversity and conservation, provides an opportunity to collect and analyse audio data in relative real time and at low cost. Acoustic methods are increasingly accessible, with the expansion of cloud-based computing, low-cost hardware, and machine learning approaches. Paired with purposeful experimental design, acoustic data can complement existing surveillance methods and provide a novel toolkit to investigate the key biological parameters and ecological interactions that underpin infectious disease epidemiology.


Assuntos
Doenças Transmissíveis , Ecossistema , Animais , Humanos , Biodiversidade , Animais Selvagens , Acústica , Doenças Transmissíveis/epidemiologia
4.
Remote Sens (Basel) ; 15(11): 2775, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37324796

RESUMO

Disease control programs are needed to identify the breeding sites of mosquitoes, which transmit malaria and other diseases, in order to target interventions and identify environmental risk factors. The increasing availability of very-high-resolution drone data provides new opportunities to find and characterize these vector breeding sites. Within this study, drone images from two malaria-endemic regions in Burkina Faso and Côte d'Ivoire were assembled and labeled using open-source tools. We developed and applied a workflow using region-of-interest-based and deep learning methods to identify land cover types associated with vector breeding sites from very-high-resolution natural color imagery. Analysis methods were assessed using cross-validation and achieved maximum Dice coefficients of 0.68 and 0.75 for vegetated and non-vegetated water bodies, respectively. This classifier consistently identified the presence of other land cover types associated with the breeding sites, obtaining Dice coefficients of 0.88 for tillage and crops, 0.87 for buildings and 0.71 for roads. This study establishes a framework for developing deep learning approaches to identify vector breeding sites and highlights the need to evaluate how results will be used by control programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA