Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 202: 116044, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31352122

RESUMO

There is much evidence that dopamine is vital for cognitive functioning in aging. Here we tested the hypothesis that aerobic exercise and fitness influence dopaminergic neurotransmission in the striatum, and in turn performance on offline working-memory updating tasks. Dopaminergic neurotransmission was measured by positron emission tomography (PET) and the non-displacable binding potential (BPND) of [11C]raclopride, i.e. dopamine (DA) D2-receptor (D2R) availability. Fifty-four sedentary older adults underwent a six-months exercise intervention, performing either aerobic exercise or stretching, toning, and resistance active control training. At baseline, higher aerobic fitness levels (VO2peak) were associated with higher BPND in the striatum, providing evidence of a link between an objective measure of aerobic fitness and D2R in older adults. BPND decreased substantially over the intervention in both groups but the intervention effects were non-selective with respect to exercise group. The decrease was several times larger than any previously estimated annual decline in D2R, potentially due to increased endogenous DA. Working-memory was unrelated to D2R both at baseline and following the intervention. To conclude, we provide partial evidence for a link between physical exercise and DA. Utilizing a PET protocol able to disentangle both D2R and DA levels could shed further light on whether, and how, aerobic exercise impacts the dopaminergic system in older adults.


Assuntos
Envelhecimento/fisiologia , Dopamina/metabolismo , Exercício Físico/fisiologia , Aptidão Física/fisiologia , Receptores de Dopamina D2/metabolismo , Treinamento Resistido , Idoso , Envelhecimento/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Racloprida
2.
Cereb Cortex ; 28(11): 3894-3907, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028935

RESUMO

Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.


Assuntos
Encéfalo/metabolismo , Cognição/fisiologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Idoso , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Análise de Classes Latentes , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Análise Multivariada , Tomografia por Emissão de Pósitrons , Racloprida
3.
Neuroimage ; 99: 357-64, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24862078

RESUMO

Reward and motivation have positive influences on cognitive-control processes in numerous settings. Models of reward implicate corticostriatal loops and the dopamine (DA) system, with special emphasis on D2 receptors in nucleus accumbens (NAcc). In this study, 11 right-handed males (35-40 years) were scanned with positron emission tomography (PET) in a single [(11)C]raclopride dynamic scan during rewarded and non-rewarded task switching. Rewarded task switching (relative to baseline task switching) decreased [(11)C]raclopride binding in NAcc. Decreasing NAcc [(11)C]raclopride binding was strongly associated with task reaction time measures that reflect individual differences in effort and control strategies. Voxelwise analyses additionally revealed reward-related DA release in anterodorsal caudate, a region previously associated with task-switching. These PET findings provide evidence for striatal DA release during motivated cognitive control, and further suggest that NAcc DA release predicts the task reaction time benefits of reward incentives.


Assuntos
Antagonistas de Dopamina , Dopamina/metabolismo , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/metabolismo , Racloprida , Recompensa , Adulto , Atenção/fisiologia , Sinais (Psicologia) , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia
4.
Front Psychol ; 9: 2612, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619011

RESUMO

Objectives: Aerobic exercise influence cognition in elderly, children, and neuropsychiatric populations. Less is known about the influence of aerobic exercise in healthy samples (particularly working age), and of different fitness levels on cognition. Two hypotheses were posed: (1) low fitness levels, compared to moderate and high, will be related to poorer cognitive performance, and (2) breakpoints for the beneficial relationship between VO2 and cognition will be observed within the moderate-to-high fitness span. Design and Methods: The sample consisted of n=362 office workers. A submaximal cycle ergometer test estimated maximal oxygen consumption (VO2max, mL·kg-1·min-1). Based on estimated VO2max participants were split into tertiles; low (n = 121), moderate (n = 119), and high (n = 122). A cognitive test battery (9 tests), assessed processing speed, working memory, executive functions and episodic memory. Results: Both hypotheses were confirmed. Groups of moderate (≈40) and high (≈49) fitness outperformed the group of low (≈31) fitness for inhibition and episodic recognition, whereas no significant differences between moderate and high fitness were observed (ANCOVAs). Breakpoints between benefits fromVO2max for inhibition and recognition were estimated to ≈44/43 mL·kg-1·min-1 (multivariate broken line regressions). Conclusions: Results suggest that it is conceivable to expect a beneficial relationship between VO2max and some cognitive domains up to a certain fitness level. In a sample of healthy office workers, this level was estimated to 44 mL·kg-1·min-1. This has implications on organizational and societal levels; where incentives to improve fitness levels from low to moderate could yield desirable cognitive and health benefits in adults.

5.
Front Aging Neurosci ; 9: 267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848424

RESUMO

Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO2-peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO2-peak was negativly related to BOLD-signal fluctuations (BOLDSTD) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO2-related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic brain activity. Moreover, fitness-predicted changes in functional connectivity did not relate to changes in cognition, which is likely due to absent cross-sectional or longitudinal relationships between VO2-peak and cognition. We conclude that the aerobic exercise intervention had limited influence on patterns of intrinsic brain activity, although post hoc analyses indicated that individual changes in aerobic capacity preferentially influenced mid-temporal brain areas.

6.
Front Aging Neurosci ; 8: 336, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28149277

RESUMO

Studies have shown that aerobic exercise has the potential to improve cognition and reduce brain atrophy in older adults. However, the literature is equivocal with regards to the specificity or generality of these effects. To this end, we report results on cognitive function and brain structure from a 6-month training intervention with 60 sedentary adults (64-78 years) randomized to either aerobic training or stretching and toning control training. Cognitive functions were assessed with a neuropsychological test battery in which cognitive constructs were measured using several different tests. Freesurfer was used to estimate cortical thickness in frontal regions and hippocampus volume. Results showed that aerobic exercisers, compared to controls, exhibited a broad, rather than specific, improvement in cognition as indexed by a higher "Cognitive score," a composite including episodic memory, processing speed, updating, and executive function tasks (p = 0.01). There were no group differences in cortical thickness, but additional analyses revealed that aerobic fitness at baseline was specifically related to larger thickness in dorsolateral prefrontal cortex (dlPFC), and hippocampus volume was positively associated with increased aerobic fitness over time. Moreover, "Cognitive score" was related to dlPFC thickness at baseline, but changes in "Cognitive score" and dlPFC thickness were associated over time in the aerobic group only. However, aerobic fitness did not predict dlPFC change, despite the improvement in "Cognitive score" in aerobic exercisers. Our interpretation of these observations is that potential exercise-induced changes in thickness are slow, and may be undetectable within 6-months, in contrast to change in hippocampus volume which in fact was predicted by the change in aerobic fitness. To conclude, our results add to a growing literature suggesting that aerobic exercise has a broad influence on cognitive functioning, which may aid in explaining why studies focusing on a narrower range of functions have sometimes reported mixed results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA