Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 65(2): 207-219, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28107647

RESUMO

Metal efflux pumps maintain ion homeostasis in the cell. The functions of the transporters are often supported by chaperone proteins, which scavenge the metal ions from the cytoplasm. Although the copper ion transporter CopA has been known in Escherichia coli, no gene for its chaperone had been identified. We show that the CopA chaperone is expressed in E. coli from the same gene that encodes the transporter. Some ribosomes translating copA undergo programmed frameshifting, terminate translation in the -1 frame, and generate the 70 aa-long polypeptide CopA(Z), which helps cells survive toxic copper concentrations. The high efficiency of frameshifting is achieved by the combined stimulatory action of a "slippery" sequence, an mRNA pseudoknot, and the CopA nascent chain. Similar mRNA elements are not only found in the copA genes of other bacteria but are also present in ATP7B, the human homolog of copA, and direct ribosomal frameshifting in vivo.


Assuntos
Adenosina Trifosfatases/biossíntese , Proteínas de Transporte de Cátions/biossíntese , Cobre/metabolismo , Escherichia coli/enzimologia , Mudança da Fase de Leitura do Gene Ribossômico , Chaperonas Moleculares/biossíntese , Ribossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , ATPases Transportadoras de Cobre , Escherichia coli/genética , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genótipo , Células HEK293 , Homeostase , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Conformação de Ácido Nucleico , Terminação Traducional da Cadeia Peptídica , Fenótipo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
3.
FASEB J ; 34(6): 7941-7957, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293069

RESUMO

Acute renal depletion of sorting nexin 1 (SNX1) in mice results in blunted natriuretic response and hypertension due to impaired dopamine D5 receptor (D5 R) activity. We elucidated the molecular mechanisms for these phenotypes in Snx1-/- mice. These mice had increased renal expressions of angiotensin II type 1 receptor (AT1 R), NADPH oxidase (NOX) subunits, D5 R, and NaCl cotransporter. Basal reactive oxygen species (ROS), NOX activity, and blood pressure (BP) were also higher in Snx1-/- mice, which were normalized by apocynin, a drug that prevents NOX assembly. Renal proximal tubule (RPT) cells from hypertensive (HT) Euro-American males had deficient SNX1 activity, impaired D5 R endocytosis, and increased ROS compared with cells from normotensive (NT) Euro-American males. siRNA-mediated depletion of SNX1 in RPT cells from NT subjects led to a blunting of D5 R agonist-induced increase in cAMP production and decrease in Na+ transport, effects that were normalized by over-expression of SNX1. Among HT African-Americans, three of the 12 single nucleotide polymorphisms interrogated for the SNX1 gene were associated with a decrease in systolic BP in response to hydrochlorothiazide (HCTZ). The results illustrate a new paradigm for the development of hypertension and imply that the trafficking protein SNX1 may be a crucial determinant for hypertension and response to antihypertensive therapy.


Assuntos
Hipertensão/metabolismo , Estresse Oxidativo/fisiologia , Nexinas de Classificação/metabolismo , Animais , Pressão Sanguínea/fisiologia , Linhagem Celular , Feminino , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , NADPH Oxidases/metabolismo , Oxirredução , Transporte Proteico/fisiologia , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
4.
J Biol Chem ; 291(30): 15788-95, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27226636

RESUMO

West Nile virus (WNV) is a prototypical emerging virus for which no effective therapeutics currently exist. WNV uses programmed -1 ribosomal frameshifting (-1 PRF) to synthesize the NS1' protein, a C terminally extended version of its non-structural protein 1, the expression of which enhances neuro-invasiveness and viral RNA abundance. Here, the NS1' frameshift signals derived from four WNV strains were investigated to better understand -1 PRF in this quasispecies. Sequences previously predicted to promote -1 PRF strongly promote this activity, but frameshifting was significantly more efficient upon inclusion of additional 3' sequence information. The observation of different rates of -1 PRF, and by inference differences in the expression of NS1', may account for the greater degrees of pathogenesis associated with specific WNV strains. Chemical modification and mutational analyses of the longer and shorter forms of the -1 PRF signals suggests dynamic structural rearrangements between tandem stem-loop and mRNA pseudoknot structures in two of the strains. A model is suggested in which this is employed as a molecular switch to fine tune the relative expression of structural to non-structural proteins during different phases of the viral replication cycle.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Modelos Biológicos , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/fisiologia , RNA Mensageiro/química , RNA Viral/química , Proteínas não Estruturais Virais/química
5.
Antimicrob Agents Chemother ; 59(12): 7308-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26369955

RESUMO

Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections.


Assuntos
Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Corpos Estranhos/prevenção & controle , Gases em Plasma/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/síntese química , Feminino , Fibrinogênio/antagonistas & inibidores , Fibrinogênio/química , Fibronectinas/antagonistas & inibidores , Fibronectinas/química , Corpos Estranhos/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Oxigênio/química , Próteses e Implantes/microbiologia , Ligação Proteica/efeitos dos fármacos , Albumina Sérica/antagonistas & inibidores , Albumina Sérica/química , Elastômeros de Silicone/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Compostos de Trimetilsilil/química
6.
FASEB J ; 28(3): 1422-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24308971

RESUMO

The dopamine D3 receptor (D3R) is crucial in the regulation of blood pressure and sodium balance, in that Drd3 gene ablation in mice results in hypertension and failure to excrete a dietary salt load. The mechanism responsible for the renal sodium retention in these mice is largely unknown. We now offer and describe a novel mechanism by which D3R decreases sodium transport in the long term by inhibiting the deubiquitinylating activity of ubiquitin-specific peptidase 48 (USP48), thereby promoting Na(+)-H(+) exchanger (NHE)-3 degradation. We found that stimulation with the D3R-specific agonist PD128907 (1 µM, 30 min) promoted the interaction and colocalization among D3R, NHE3, and USP48; inhibited USP48 activity (-35±6%, vs. vehicle), resulting in increased ubiquitinylated NHE3 (+140±10%); and decreased NHE3 expression (-50±9%) in human renal proximal tubule cells (hRPTCs). USP48 silencing decreased NHE3's half-life (USP48 siRNA t1/2=6.1 h vs. vehicle t1/2=12.9 h), whereas overexpression of USP48 increased NHE3 half-life (t1/2=21.8 h), indicating that USP48 protects NHE3 from degradation via deubiquitinylation. USP48 accounted for ∼30% of the total deubiquitinylating activity in these cells. Extending our studies in vivo, we found that pharmacologic blockade of D3R via the D3R-specific antagonist GR103691 (1 µg/kg/min, 4 d) in C57Bl/6J mice increased renal NHE3 expression (+310±15%, vs. vehicle), whereas an innovative kidney-restricted Usp48 silencing via siRNA (3 µg/d, 7 d) increased ubiquitinylated NHE3 (+250±30%, vs. controls), decreased total NHE3 (-23±2%), and lowered blood pressure (-24±2 mm Hg), compared with that in control mice that received either the vehicle or nonsilencing siRNA. Our data demonstrate a crucial role for the dynamic interaction between D3R and USP48 in the regulation of NHE3 expression and function.


Assuntos
Endopeptidases/fisiologia , Receptores de Dopamina D3/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Sequência de Bases , Células Cultivadas , Primers do DNA , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/fisiologia , Reação em Cadeia da Polimerase , Proteólise , Trocador 3 de Sódio-Hidrogênio , Técnicas do Sistema de Duplo-Híbrido
7.
Am J Physiol Regul Integr Comp Physiol ; 307(6): R634-42, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25080496

RESUMO

Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1ßR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1ßR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1ßR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1ßR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1ßR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis.


Assuntos
Braquiúros/enzimologia , AMP Cíclico/metabolismo , Brânquias/enzimologia , Receptores de Dopamina D5/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Adaptação Fisiológica , Animais , Braquiúros/efeitos dos fármacos , Braquiúros/genética , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Regulação para Baixo , Brânquias/efeitos dos fármacos , Masculino , Osmorregulação , RNA Mensageiro/metabolismo , Receptores de Dopamina D5/efeitos dos fármacos , Receptores de Dopamina D5/genética , Salinidade , Regulação para Cima
8.
FASEB J ; 27(5): 1808-19, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23195037

RESUMO

The D1 dopamine receptor (D1R) is widely expressed in the kidney and plays a crucial role in blood pressure regulation. Although much is known about D1R desensitization, especially through G-protein-coupled receptor kinase 4 (GRK4), comparatively little is known about other aspects of D1R trafficking and the proteins involved in the process. We now report the discovery of a dynamic interaction between sorting nexin 5 (SNX5), a component of the mammalian retromer, and D1R in human renal epithelial cells. We show that internalization of agonist-activated D1R is regulated by both SNX5 and GRK4, and that SNX5 is critical to the recycling of the receptor to the plasma membrane. SNX5 depletion increases agonist-activated D1R phosphorylation (>50% at basal condition), prevents D1R internalization and cAMP response, and delays receptor recycling compared to mock siRNA-transfected controls. Moreover, renal restricted subcapsular infusion of Snx5-specific siRNA (vs. mock siRNA) decreases sodium excretion (Δ=-0.2±0.005 mEq/mg creatinine) and further elevates the systolic blood pressure (Δ=48±5 mm Hg) in spontaneously hypertensive rats, indicating that SNX5 depletion impairs renal D1R function. These studies demonstrate an essential role for SNX5 in regulating D1R function, which may have important diagnostic, prognostic, and therapeutic implications in the management of essential hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/fisiologia , Hipertensão/fisiopatologia , Rim/fisiologia , Receptores de Dopamina D1/fisiologia , Nexinas de Classificação/fisiologia , Animais , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Transporte Proteico/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Endogâmicos SHR
9.
Materials (Basel) ; 17(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124362

RESUMO

The objective of this study was to evaluate the coating integrity performance and corrosion protection property of trimethylsilane (TMS) plasma nanocoatings that were directly deposited onto cobalt chromium (CoCr) L605 cardiovascular stents. Hydrophilic surfaces were achieved for the TMS plasma nanocoatings that were deposited onto the coronary stents through NH3/O2 (2:1 molar ratio) plasma post-treatment. With a coating thickness of approximately 20-25 nm, the TMS plasma nanocoatings were highly durable and able to resist delamination and cracking from crimping and expansion by a Model CX with a J-Crimp Station. The stent surface that was evaluated by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) showed no indications of pitting, corrosion, or adsorption products on either the luminal or abluminal surfaces of the stents, in contrast to the uncoated stent surface. The TMS plasma nanocoatings significantly enhanced the stent's corrosion resistance in immersion experiments that followed the ASTM F2129-15 corrosion protocol, evident in the increase of the open circuit potential (OCP) from 0.01 V for the uncoated L605 stent to 0.18 V for the plasma-nanocoated L605 stent, reducing potential cytotoxic metal ion release. Cyclic polarization (CP) curves show that the corrosion rate (density level) observed in plasma-nanocoated L605 stents was approximately half an order of magnitude lower than that of the uncoated stents, indicating improved corrosion protection of the stents. CP curves of the TMS plasma-nanocoated stents with different coating thicknesses show that, in the range of 20-65 nm, the coating thickness does not result in any difference in the corrosion resistance of the stents.

10.
J Vasc Surg ; 58(6): 1627-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23683381

RESUMO

OBJECTIVE: Ischemia-reperfusion (IR) injury is a significant problem in the management of patients with acute limb ischemia. Despite rapid restoration of blood flow after technically successful open and endovascular revascularization, complications secondary to IR injury continue to occur and limit clinical success. Our aim was to create a murine model of hind limb IR injury to examine the role of Toll-like receptor-4 (TLR4) and to determine whether inactive TLR4 led to a decrease in the detection of neutrophil extracellular traps (NETs), which are known to be highly thrombogenic and may mediate microvascular injury. METHODS: A calibrated tension tourniquet was applied to unilateral hind limb of wild-type (WT) and TLR4 receptor mutant (TLR4m) mice for 1.5 hours to induce ischemia and then removed to initiate reperfusion. At the end of 48 hours of reperfusion, mice were euthanized and hind limb tissue and serum specimens were collected for analysis. Hematoxylin and eosin-stained sections of hind limb skeletal muscle tissue were examined for fiber injury. For immunohistochemistry, mouse monoclonal antihistone H2A/H2B/DNA complex antibody to detect NETs and rabbit polyclonal antimyeloperoxidase antibody were used to identify infiltrating cells containing myeloperoxidase. Muscle adenosine triphosphate levels, nuclear factor (NF)-κB activity, the α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, poly (adenosine diphosphate-ribose) polymerase activity, and inducible nitric oxide synthase expression were measured. Systemic levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, and vascular endothelial growth factor in the serum samples were also examined. RESULTS: IR injury in the hind limb of WT mice demonstrated significant levels of muscle fiber injury, decreased energy substrates, increased NF-κB activation, decreased levels of α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, increased inducible nitric oxide synthase expression, and increased poly (adenosine diphosphate-ribose) polymerase activity levels compared with the TLR4m samples. Additionally, there was marked decrease in the level of neutrophil and monocyte infiltration in the TLR4m mice, which corresponded to similar levels of decreased NET detection in the interstitial space and in microvascular thrombi. In situ nuclease treatment of WT tissue sections significantly diminished the level of NET immunostaining, demonstrating the specificity of the antibody to detect NETs and suggesting a potential role for nuclease treatment in IR injury. CONCLUSIONS: These results suggest a pivotal role for TLR4 in mediating hind limb IR injury and suggest that NETs may contribute to muscle fiber injury.


Assuntos
Membro Posterior/irrigação sanguínea , Mutação , Neutrófilos/metabolismo , RNA/genética , Traumatismo por Reperfusão/genética , Receptor 4 Toll-Like/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Traumatismo por Reperfusão/metabolismo , Receptor 4 Toll-Like/metabolismo
11.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065141

RESUMO

Excessive or persistent infection is a major contributing factor in impeding chronic wound healing. Wound bed preparations using antiseptics do not necessarily target the entire bacterial spectrum, and the highly proliferating granulation tissue may be sensitive to the cytotoxic effects, impairing tissue repair. Non-thermal gas atmospheric pressure plasmas are partially ionized gases that contain highly reactive particles while the gas phase remains near room temperature, thus having the capability of accessing small irregular cavities and fissures and killing bacteria because of the diffusive nature of gas phase plasma species that are chemically reactive, providing an ideal approach to topical wound disinfection. A non-thermal plasma brush device of novel design has been developed that is suitable for clinical application in the disinfection of oral and wound bacteria. In vivo studies have indicated that the plasma brush treatment rendered no harmful effect on healthy skin or tissues, while it could improve wound healing in Pseudomonas aeruginosa biofilm infected wounds exposed to an optimized treatment with argon plus 1% nitrogen (Ar + N2) plasma.


Assuntos
Gases em Plasma , Gases em Plasma/uso terapêutico , Cicatrização , Pele , Bactérias , Nitrogênio
12.
J Biomed Mater Res A ; 111(11): 1768-1780, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37465994

RESUMO

In-stent restenosis and thrombosis remain to be long-term challenges in coronary stenting procedures. The objective of this study was to evaluate the in vitro biological responses of trimethylsilane (TMS) plasma nanocoatings modified with NH3 /O2 (2:1 molar ratio) plasma post-treatment (TMS + NH3 /O2 nanocoatings) on cobalt chromium (CoCr) alloy L605 coupons, L605 stents, and 316L stainless steel (SS) stents. Surface properties of the plasma nanocoatings with up to 2-year aging time were characterized by wettability assessment and x-ray photoelectron spectroscopy (XPS). It was found that TMS + NH3 /O2 nanocoatings had a surface composition of 41.21 ± 1.06 at% oxygen, 31.90 ± 1.08 at% silicon, and 24.12 ± 1.7 at% carbon, and very small but essential amount of 2.77 ± 0.18 at% nitrogen. Surface chemical stability of the plasma coatings was noted with persistent O/Si atomic ratio of 1.292-1.413 and N/Si atomic ratio of ~0.087 through 2 years. The in vitro biological responses of plasma nanocoatings were studied by evaluating the cell proliferation and migration of porcine coronary artery endothelial cells (PCAECs) and smooth muscle cells (PCASMCs). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay results revealed that, after 7-day incubation, TMS + NH3 /O2 nanocoatings maintained a similar level of PCAEC proliferation while showing a decrease in the viability of PCASMCs by 73 ± 19% as compared with uncoated L605 surfaces. Cell co-culture of PCAECs and PCASMCs results showed that, the cell ratio of PCAEC/PCASMC on TMS + NH3 /O2 nanocoating surfaces was 1.5-fold higher than that on uncoated L605 surfaces, indicating enhanced selectivity for promoting PCAEC growth. Migration test showed comparable PCAEC migration distance for uncoated L605 and TMS + NH3 /O2 nanocoatings. In contrast, PCASMC migration distance was reduced nearly 8.5-fold on TMS + NH3 /O2 nanocoating surfaces as compared to the uncoated L605 surfaces. Platelet adhesion test using porcine whole blood showed lower adhered platelets distribution (by 70 ± 16%), reduced clotting attachment (by 54 ± 12%), and less platelet activation on TMS + NH3 /O2 nanocoating surfaces as compared with the uncoated L605 controls. It was further found that, under shear stress conditions of simulated blood flow, TMS + NH3 /O2 nanocoating significantly inhibited platelet adhesion compared to the uncoated 316L SS stents and TMS nanocoated 316L SS stents. These results indicate that TMS + NH3 /O2 nanocoatings are very promising in preventing both restenosis and thrombosis for coronary stent applications.


Assuntos
Células Endoteliais , Trombose , Animais , Suínos , Stents , Plaquetas/metabolismo , Coagulação Sanguínea , Ligas de Cromo , Trombose/prevenção & controle
13.
Pest Manag Sci ; 79(5): 1635-1649, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36622360

RESUMO

BACKGROUND: Pyridazine pyrazolecarboxamides (PPCs) are a novel insecticide class discovered and optimized at BASF. Dimpropyridaz is the first PPC to be submitted for registration and controls many aphid species as well as whiteflies and other piercing-sucking insects. RESULTS: Dimpropyridaz and other tertiary amide PPCs are proinsecticides that are converted in vivo into secondary amide active forms by N-dealkylation. Active secondary amide metabolites of PPCs potently inhibit the function of insect chordotonal neurons. Unlike Group 9 and 29 insecticides, which hyperactivate chordotonal neurons and increase Ca2+ levels, active metabolites of PPCs silence chordotonal neurons and decrease intracellular Ca2+ levels. Whereas the effects of Group 9 and 29 insecticides require TRPV (Transient Receptor Potential Vanilloid) channels, PPCs act in a TRPV-independent fashion, without compromising cellular responses to Group 9 and 29 insecticides, placing the molecular PPC target upstream of TRPVs. CONCLUSIONS: PPCs are a new class of chordotonal organ modulator insecticide for control of piercing-sucking pests. Dimpropyridaz is a PPC proinsecticide that is activated in target insects to secondary amide forms that inhibit the firing of chordotonal organs. The inhibition occurs at a site upstream of TRPVs and is TRPV-independent, providing a novel mode of action for resistance management. © 2023 BASF Corporation. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Afídeos , Inseticidas , Animais , Inseticidas/farmacologia , Insetos , Amidas/farmacologia , Resistência a Inseticidas
14.
Antimicrob Agents Chemother ; 56(11): 5923-37, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22964248

RESUMO

Biofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction. Staphylococcus epidermidis infections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreased S. epidermidis biofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms.


Assuntos
Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Infecção Hospitalar/prevenção & controle , Próteses e Implantes/microbiologia , Silanos/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus epidermidis/efeitos dos fármacos , Ligas/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Ciprofloxacina/farmacologia , Materiais Revestidos Biocompatíveis/química , Resistência Microbiana a Medicamentos , Humanos , Microscopia Confocal , Gases em Plasma , Silanos/química , Aço Inoxidável/química , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície , Titânio/química
15.
J Am Soc Nephrol ; 22(1): 82-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21051739

RESUMO

Disruption of the dopamine D(5) receptor gene in mice increases BP and causes salt sensitivity. To determine the role of renal versus extrarenal D(5) receptors in BP regulation, we performed cross-renal transplantation experiments. BP was similar between wild-type mice and wild-type mice transplanted with wild-type kidneys, indicating that the transplantation procedure did not affect BP. BP was lower among D(5)(-/-) mice transplanted with wild-type kidneys than D(5)(-/-) kidneys, demonstrating that the renal D(5) receptors are important in BP control. BP was higher in wild-type mice transplanted with D(5)(-/-) kidneys than wild-type kidneys but not significantly different from syngenic transplanted D(5)(-/-) mice, indicating the importance of the kidney in the development of hypertension. On a high-salt diet, all mice with D(5)(-/-) kidneys excreted less sodium than mice with wild-type kidneys. Transplantation of a wild-type kidney into a D(5)(-/-) mouse decreased the renal expression of AT(1) receptors and Nox-2. Conversely, transplantation of a D(5)(-/-) kidney into a wild-type mouse increased the expression of both, suggesting that both renal and extrarenal factors are important in the regulation of AT(1) receptor and Nox-2 expression. These results highlight the role of renal D(5) receptors in BP homeostasis and the pathogenesis of hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/etiologia , Hipertensão/metabolismo , Rim/metabolismo , Receptores de Dopamina D5/deficiência , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Transplante de Rim , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Dopamina D5/genética , Receptores de Dopamina D5/metabolismo , Sódio/urina , Cloreto de Sódio na Dieta/farmacologia
16.
Materials (Basel) ; 15(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079346

RESUMO

The objective of this study was to evaluate the biocompatibility of trimethylsilane (TMS) plasma nanocoatings modified with NH3/O2 (2:1 molar ratio) plasma post-treatment onto cobalt chromium (CoCr) L605 alloy coupons and stents for cardiovascular stent applications. Biocompatibility of plasma nanocoatings was evaluated by coating adhesion, corrosion behavior, ion releasing, cytotoxicity, and cell proliferation. Surface chemistry and wettability were studied to understand effects of surface properties on biocompatibility. Results show that NH3/O2 post-treated TMS plasma nanocoatings are hydrophilic with water contact angle of 48.5° and have a typical surface composition of O (39.39 at.%), Si (31.92 at.%), C (24.12 at.%), and N (2.77 at.%). The plasma nanocoatings were conformal to substrate surface topography and had excellent adhesion to the alloy substrates, as assessed by tape test (ASTM D3359), and showed no cracking or peeling off L605 stent surfaces after dilation. The plasma nanocoatings also improve the corrosion resistance of CoCr L605 alloy by increasing corrosion potential and decreasing corrosion rates with no pitting corrosion and no mineral adsorption layer. Ion releasing test revealed that Co, Cr, and Ni ion concentrations were reduced by 64-79%, 67-69%, and 57-72%, respectively, in the plasma-nanocoated L605 samples as compared to uncoated L605 control samples. The plasma nanocoatings showed no sign of cytotoxicity from the test results according to ISO 10993-05 and 10993-12. Seven-day cell culture demonstrated that, in comparison with the uncoated L605 control surfaces, the plasma nanocoating surfaces showed 62 ± 7.3% decrease in porcine coronary artery smooth muscle cells (PCASMCs) density and had comparable density of porcine coronary artery endothelial cells (PCAECs). These results suggest that TMS plasma nanocoatings with NH3/O2 plasma post-treatment possess the desired biocompatibility for stent applications and support the hypothesis that nanocoated stents could be very effective for in-stent restenosis prevention.

17.
J Clin Invest ; 118(6): 2180-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18464932

RESUMO

Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we investigated the in vivo and in vitro interaction between these GPCRs. Disruption of the gene encoding D5R in mice increased both blood pressure and AT1R protein expression, and the increase in blood pressure was reversed by AT1R blockade. Activation of D5R increased the degradation of glycosylated AT1R in proteasomes in HEK cells and human renal proximal tubule cells heterologously and endogenously expressing human AT1R and D5R. Confocal microscopy, Förster/fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy revealed that activation of D5R initiated ubiquitination of the glycosylated AT1R at the plasma membrane. The regulated degradation of AT1R via a ubiquitin/proteasome pathway by activation of D5R provides what we believe to be a novel mechanism whereby blood pressure can be regulated by the interaction of 2 counterregulatory GPCRs. Our results therefore suggest that treatments for hypertension might be optimized by designing compounds that can target the AT1R and the D5R.


Assuntos
Regulação da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Dopamina D5/fisiologia , Ubiquitina/metabolismo , Animais , Pressão Sanguínea , Linhagem Celular , Membrana Celular/metabolismo , Glicosilação , Humanos , Túbulos Renais/metabolismo , Camundongos , Modelos Biológicos , Receptores de Dopamina D5/genética
18.
Curr Hypertens Rep ; 13(1): 55-66, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21058046

RESUMO

The assessment of salt sensitivity of blood pressure is difficult because of the lack of universal consensus on definition. Regardless of the variability in the definition of salt sensitivity, increased salt intake, independent of the actual level of blood pressure, is also a risk factor for cardiovascular morbidity and mortality and kidney disease. A modest reduction in salt intake results in an immediate decrease in blood pressure, with long-term beneficial consequences. However, some have suggested that dietary sodium restriction may not be beneficial to everyone. Thus, there is a need to distinguish salt-sensitive from salt-resistant individuals, but it has been difficult to do so with phenotypic studies. Therefore, there is a need to determine the genes that are involved in salt sensitivity. This review focuses on genes associated with salt sensitivity, with emphasis on the variants associated with salt sensitivity in humans that are not due to monogenic causes. Special emphasis is given to gene variants associated with salt sensitivity whose protein products interfere with cell function and increase blood pressure in transgenic mice.


Assuntos
Hipertensão/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Sódio na Dieta/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Doenças Cardiovasculares/embriologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Expressão Gênica , Humanos , Hipertensão/induzido quimicamente , Hipertensão/epidemiologia , Nefropatias/epidemiologia , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/genética , Fatores de Risco , Sódio na Dieta/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Estados Unidos/epidemiologia
19.
Biochem Biophys Res Commun ; 367(3): 649-55, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18190783

RESUMO

G protein-coupled receptors (GPCRs) are regulated by multiple families of kinases including GPCR kinases (GRKs). GRK4 is constitutively active towards GPCRs, and polymorphisms of GRK4gamma are linked to hypertension. We examined, through co-immunoprecipitation, the interactions between GRK4gamma and the Galpha and Gbeta subunits of heterotrimeric G proteins. Because GRK4 has been shown to inhibit Galpha(s)-coupled GPCR signaling and lacks a PH domain, we hypothesized that GRK4gamma would interact with active Galpha(s), but not Gbeta. Surprisingly, GRK4gamma preferentially interacts with inactive Galpha(s) and Gbeta to a greater extent than active Galpha(s). GRK4gamma also interacts with inactive Galpha(13) and Gbeta. Functional studies demonstrate that wild-type GRK4gamma, but not kinase-dead GRK4gamma, ablates isoproterenol-mediated cAMP production indicating that the kinase domain is responsible for GPCR regulation. This evidence suggests that binding to inactive Galpha(s) and Gbeta may explain the constitutive activity of GRK4gamma towards Galpha(s)-coupled receptors.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , Quinase 4 de Receptor Acoplado a Proteína G/genética , Técnicas de Transferência de Genes , Humanos , Imunoprecipitação , Isoproterenol/farmacologia , Ligação Proteica/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
20.
Circ Res ; 99(5): 494-500, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16902178

RESUMO

The dopaminergic and renin angiotensin systems interact to regulate blood pressure. Disruption of the D(3) dopamine receptor gene in mice produces renin-dependent hypertension. In rats, D(2)-like receptors reduce angiotensin II binding sites in renal proximal tubules (RPTs). Because the major D(2)-like receptor in RPTs is the D(3) receptor, we examined whether D(3) receptors regulate angiotensin II type 1 (AT(1)) receptors in rat RPT cells. The effect of D(3) receptors on AT(1) receptors was studied in vitro and in vivo. The D(3) receptor agonist PD128907 decreased AT(1) receptor protein and mRNA in WKY RPT cells and increased it in SHR cells. PD128907 increased D(3) receptors in WKY cells but had no effect in SHR cells. D(3)/AT(1) receptors colocalized in RPT cells; D(3) receptor stimulation decreased the percent amount of D(3) receptors that coimmunoprecipitated with AT(1) receptors to a greater extent in WKY than in SHR cells. However, D(3) receptor stimulation did not change the percent amount of AT(1) receptors that coimmunoprecipitated with D(3) receptors in WKY cells and markedly decreased the coimmunoprecipitation in SHR cells. The D(3) receptor also regulated the AT(1) receptor in vivo because AT(1) receptor expression was increased in kidneys of D(3) receptor-null mice compared with wild type littermates. D(3) receptors may regulate AT(1) receptor function by direct interaction with and regulation of AT(1) receptor expression. One mechanism of hypertension may be related to increased renal expression of AT(1) receptors due decreased D(3) receptor regulation.


Assuntos
Túbulos Renais Proximais/metabolismo , Ratos Endogâmicos SHR , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Dopamina D3/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Benzopiranos/farmacologia , Células Cultivadas , Agonistas de Dopamina/farmacologia , Túbulos Renais Proximais/patologia , Camundongos , Camundongos Knockout , Oxazinas/farmacologia , Ratos , Ratos Endogâmicos WKY , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/deficiência , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA