RESUMO
Neuroinflammation is an important pathogenic mechanism in many neurodegenerative diseases, including those caused by frontotemporal lobar degeneration (FTLD). Postmortem and in vivo imaging studies have shown brain inflammation early in these conditions, proportionate to symptom severity and rate of progression. However, evidence for corresponding blood markers of inflammation and their relationship with central inflammation and clinical outcome are limited. There is a pressing need for such scalable, accessible and mechanistically relevant blood markers as these will reduce the time, risk, and costs of experimental medicine trials. We therefore assessed inflammatory patterns of serum cytokines from 214 patients with clinical syndromes associated with FTLD as compared to healthy controls, including their correlation with brain regional microglial activation and disease progression. Serum assays used the MesoScale Discovery V-Plex-Human Cytokine 36 plex panel plus five additional cytokine assays. A sub-group of patients underwent 11C-PK11195 TSPO PET imaging, as an index of microglial activation. A Principal Component Analysis (PCA) was used to reduce the dimensionality of cytokine data, excluding cytokines that were undetectable in >50% of participants. Frequentist and Bayesian analyses were performed on the principal components, to compare each patient cohort to controls, and test for associations with central inflammation, neurodegeneration-related plasma markers and survival. The first component identified by the PCA (explaining 21.5% variance) was strongly loaded by pro-inflammatory cytokines, including TNF-α, TNF-R1, M-CSF, IL-17A, IL-12, IP-10 and IL-6. Individual scores of the component showed significant differences between each patient cohort and controls. The degree to which a patient expressed this peripheral inflammatory profile at baseline correlated negatively with survival (higher inflammation, shorter survival), even when correcting for baseline clinical severity. Higher pro-inflammatory profile scores were associated with higher microglial activation in frontal and brainstem regions, as quantified with 11C-PK11195 TSPO PET. A permutation-based Canonical Correlation Analysis confirmed the association between the same cytokine-derived pattern and central inflammation across brain regions in a fully data-based manner. This data-driven approach identified a pro-inflammatory profile across the FTLD clinical spectrum, which is associated with central neuroinflammation and worse clinical outcome. Blood-based markers of inflammation could increase the scalability and access to neuroinflammatory assessment of people with dementia, to facilitate clinical trials and experimental medicine studies.
RESUMO
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/psicologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Locus Cerúleo , Teorema de BayesRESUMO
OBJECTIVE: Synaptic loss is an early feature of neurodegenerative disease models, and is severe in post mortem clinical studies, including frontotemporal dementia. Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2A enables quantification of synaptic density in vivo. This study used [11 C]UCB-J PET in participants with behavioral variant frontotemporal dementia (bvFTD), testing the hypothesis that synaptic loss is severe and related to clinical severity. METHODS: Eleven participants with clinically probable bvFTD and 25 age- and sex-matched healthy controls were included. Participants underwent dynamic [11 C]UCB-J PET, structural magnetic resonance imaging, and a neuropsychological battery, including the revised Addenbrooke Cognitive Examination, and INECO frontal screening. General linear models compared [11 C]UCB-J binding potential maps and gray matter volume between groups, and assessed associations between synaptic density and clinical severity in patients. Analyses were also performed using partial volume corrected [11 C]UCB-J binding potential from regions of interest (ROIs). RESULTS: Patients with bvFTD showed severe synaptic loss compared to controls. [11 C]UCB-J binding was reduced bilaterally in medial and dorsolateral frontal regions, inferior frontal gyri, anterior and posterior cingulate gyrus, insular cortex, and medial temporal lobe. Synaptic loss in the frontal and cingulate regions correlated significantly with cognitive impairments. Synaptic loss was more severe than atrophy. Results from ROI-based analyses mirrored the voxelwise results. INTERPRETATION: In accordance with preclinical models, and human postmortem evidence, there is widespread frontotemporal loss of synapses in symptomatic bvFTD, in proportion to severity. [11 C]UCB-J PET could support translational studies and experimental medicine strategies for new disease-modifying treatments for neurodegeneration. ANN NEUROL 2023;93:142-154.
Assuntos
Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Pick , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Lobo Frontal , Encéfalo/metabolismoRESUMO
BACKGROUND/OBJECTIVE: The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to ß-amyloid status. METHODS: Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had ß-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS: Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the ß-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION: Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Sinapses , Humanos , Masculino , Feminino , Idoso , Peptídeos beta-Amiloides/metabolismo , Pessoa de Meia-Idade , Sinapses/patologia , Sinapses/metabolismo , Degeneração Corticobasal/patologia , Degeneração Corticobasal/metabolismo , Degeneração Corticobasal/diagnóstico por imagem , Proteínas tau/metabolismo , Imageamento por Ressonância Magnética , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Substância Cinzenta/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , CarbolinasRESUMO
Frontotemporal dementia is clinically and neuropathologically heterogeneous, but neuroinflammation, atrophy and cognitive impairment occur in all of its principal syndromes. Across the clinical spectrum of frontotemporal dementia, we assess the predictive value of in vivo neuroimaging measures of microglial activation and grey-matter volume on the rate of future cognitive decline. We hypothesized that inflammation is detrimental to cognitive performance, in addition to the effect of atrophy. Thirty patients with a clinical diagnosis of frontotemporal dementia underwent a baseline multimodal imaging assessment, including [11C]PK11195 PET to index microglial activation and structural MRI to quantify grey-matter volume. Ten people had behavioural variant frontotemporal dementia, 10 had the semantic variant of primary progressive aphasia and 10 had the non-fluent agrammatic variant of primary progressive aphasia. Cognition was assessed at baseline and longitudinally with the revised Addenbrooke's Cognitive Examination, at an average of 7-month intervals (for an average of â¼2 years, up to â¼5 years). Regional [11C]PK11195 binding potential and grey-matter volume were determined, and these were averaged within four hypothesis-driven regions of interest: bilateral frontal and temporal lobes. Linear mixed-effect models were applied to the longitudinal cognitive test scores, with [11C]PK11195 binding potentials and grey-matter volumes as predictors of cognitive performance, with age, education and baseline cognitive performance as covariates. Faster cognitive decline was associated with reduced baseline grey-matter volume and increased microglial activation in frontal regions, bilaterally. In frontal regions, microglial activation and grey-matter volume were negatively correlated, but provided independent information, with inflammation the stronger predictor of the rate of cognitive decline. When clinical diagnosis was included as a factor in the models, a significant predictive effect was found for [11C]PK11195 BPND in the left frontal lobe (-0.70, P = 0.01), but not for grey-matter volumes (P > 0.05), suggesting that inflammation severity in this region relates to cognitive decline regardless of clinical variant. The main results were validated by two-step prediction frequentist and Bayesian estimation of correlations, showing significant associations between the estimated rate of cognitive change (slope) and baseline microglial activation in the frontal lobe. These findings support preclinical models in which neuroinflammation (by microglial activation) accelerates the neurodegenerative disease trajectory. We highlight the potential for immunomodulatory treatment strategies in frontotemporal dementia, in which measures of microglial activation may also improve stratification for clinical trials.
Assuntos
Afasia Primária Progressiva , Disfunção Cognitiva , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Pick , Humanos , Demência Frontotemporal/metabolismo , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/patologia , Microglia/metabolismo , Teorema de Bayes , Lobo Frontal/patologia , Doença de Pick/patologia , Disfunção Cognitiva/metabolismo , Imageamento por Ressonância Magnética/métodos , Inflamação/patologia , Atrofia/patologia , Afasia Primária Progressiva/patologiaRESUMO
The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.
Assuntos
Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/tratamento farmacológico , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Imageamento por Ressonância Magnética , Reino UnidoRESUMO
There is a pressing need to understand the factors that predict prognosis in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), with high heterogeneity over the poor average survival. We test the hypothesis that the magnitude and distribution of connectivity changes in PSP and CBS predict the rate of progression and survival time, using datasets from the Cambridge Centre for Parkinson-plus and the UK National PSP Research Network (PROSPECT-MR). Resting-state functional MRI images were available from 146 participants with PSP, 82 participants with CBS, and 90 healthy controls. Large-scale networks were identified through independent component analyses, with correlations taken between component time series. Independent component analysis was also used to select between-network connectivity components to compare with baseline clinical severity, longitudinal rate of change in severity, and survival. Transdiagnostic survival predictors were identified using partial least squares regression for Cox models, with connectivity compared to patients' demographics, structural imaging, and clinical scores using five-fold cross-validation. In PSP and CBS, between-network connectivity components were identified that differed from controls, were associated with disease severity, and were related to survival and rate of change in clinical severity. A transdiagnostic component predicted survival beyond demographic and motion metrics but with lower accuracy than an optimal model that included the clinical and structural imaging measures. Cortical atrophy enhanced the connectivity changes that were most predictive of survival. Between-network connectivity is associated with variability in prognosis in PSP and CBS but does not improve predictive accuracy beyond clinical and structural imaging metrics.
Assuntos
Degeneração Corticobasal , Doenças Neurodegenerativas , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Prognóstico , Doenças Neurodegenerativas/diagnóstico por imagemRESUMO
BACKGROUND: Synaptic loss is characteristic of many neurodegenerative diseases; it occurs early and is strongly related to functional deficits. OBJECTIVE: In this longitudinal observational study, we determine the rate at which synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and we test the relationship with disease progression. METHODS: Our cross-sectional cohort included 32 participants with probable PSP and 16 with probable CBD (all amyloid-negative corticobasal syndrome), recruited from tertiary care centers in the United Kingdom, and 33 sex- and age-matched healthy control subjects. Synaptic density was estimated by positron emission tomography imaging with the radioligand [11 C]UCB-J that binds synaptic vesicle 2A. Clinical severity and cognition were assessed by the PSP Rating Scale and the Addenbrooke's cognitive examination. Regional [11 C]UCB-J nondisplaceable binding potential was estimated in Hammersmith Atlas regions of interest. Twenty-two participants with PSP/CBD had a follow-up [11 C]UCB-J positron emission tomography scan after 1 year. We calculated the annualized change in [11 C]UCB-J nondisplaceable binding potential and correlated this with the change in clinical severity. RESULTS: We found significant annual synaptic loss within the frontal lobe (-3.5%, P = 0.03) and the right caudate (-3.9%, P = 0.046). The degree of longitudinal synaptic loss within the frontal lobe correlated with the rate of change in the PSP Rating Scale (R = 0.47, P = 0.03) and cognition (Addenbrooke's Cognitive Examination-Revised, R = -0.62, P = 0.003). CONCLUSIONS: We provide in vivo evidence for rapid progressive synaptic loss, correlating with clinical progression in primary tauopathies. Synaptic loss may be an important therapeutic target and outcome variable for early-phase clinical trials of disease-modifying treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico , Transtornos dos Movimentos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismoRESUMO
Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.
Assuntos
Apatia , Doença de Parkinson , Cloridrato de Atomoxetina/farmacologia , Estudos Cross-Over , Humanos , Norepinefrina , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológicoRESUMO
The relationship between in vivo synaptic density and molecular pathology in primary tauopathies is key to understanding the impact of tauopathy on functional decline and in informing new early therapeutic strategies. In this cross-sectional observational study, we determine the in vivo relationship between synaptic density and molecular pathology in the primary tauopathies of progressive supranuclear palsy and corticobasal degeneration as a function of disease severity. Twenty-three patients with progressive supranuclear palsy and 12 patients with corticobasal syndrome were recruited from a tertiary referral centre. Nineteen education-, sex- and gender-matched control participants were recruited from the National Institute for Health Research 'Join Dementia Research' platform. Cerebral synaptic density and molecular pathology, in all participants, were estimated using PET imaging with the radioligands 11C-UCB-J and 18F-AV-1451, respectively. Patients with corticobasal syndrome also underwent amyloid PET imaging with 11C-PiB to exclude those with likely Alzheimer's pathology-we refer to the amyloid-negative cohort as having corticobasal degeneration, although we acknowledge other underlying pathologies exist. Disease severity was assessed with the progressive supranuclear palsy rating scale; regional non-displaceable binding potentials of 11C-UCB-J and 18F-AV-1451 were estimated in regions of interest from the Hammersmith Atlas, excluding those with known off-target binding for 18F-AV-1451. As an exploratory analysis, we also investigated the relationship between molecular pathology in cortical brain regions and synaptic density in subcortical areas. Across brain regions, there was a positive correlation between 11C-UCB-J and 18F-AV-1451 non-displaceable binding potentials (ß = 0.4, t = 3.6, P = 0.001), independent of age or time between PET scans. However, this correlation became less positive as a function of disease severity in patients (ß = -0.02, t = -2.9, P = 0.007, R = -0.41). Between regions, cortical 18F-AV-1451 binding was negatively correlated with synaptic density in subcortical areas (caudate nucleus, putamen). Brain regions with higher synaptic density are associated with a higher 18F-AV-1451 binding in progressive supranuclear palsy/corticobasal degeneration, but this association diminishes with disease severity. Moreover, higher cortical 18F-AV-1451 binding correlates with lower subcortical synaptic density. Longitudinal imaging is required to confirm the mediation of synaptic loss by molecular pathology. However, the effect of disease severity suggests a biphasic relationship between synaptic density and molecular pathology with synapse-rich regions vulnerable to accrual of pathological aggregates, followed by a loss of synapses in response to the molecular pathology. Given the importance of synaptic function for cognition and action, our study elucidates the pathophysiology of primary tauopathies and may inform the design of future clinical trials.
Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Doença de Alzheimer/patologia , Encéfalo/patologia , Carbolinas , Radioisótopos de Carbono/metabolismo , Estudos Transversais , Humanos , Patologia Molecular , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Pirrolidinonas , Paralisia Supranuclear Progressiva/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismoRESUMO
INTRODUCTION: We tested whether changes in functional networks predict cognitive decline and conversion from the presymptomatic prodrome to symptomatic disease in familial frontotemporal dementia (FTD). METHODS: For hypothesis generation, 36 participants with behavioral variant FTD (bvFTD) and 34 controls were recruited from one site. For hypothesis testing, we studied 198 symptomatic FTD mutation carriers, 341 presymptomatic mutation carriers, and 329 family members without mutations. We compared functional network dynamics between groups, with clinical severity and with longitudinal clinical progression. RESULTS: We identified a characteristic pattern of dynamic network changes in FTD, which correlated with neuropsychological impairment. Among presymptomatic mutation carriers, this pattern of network dynamics was found to a greater extent in those who subsequently converted to the symptomatic phase. Baseline network dynamic changes predicted future cognitive decline in symptomatic participants and older presymptomatic participants. DISCUSSION: Dynamic network abnormalities in FTD predict cognitive decline and symptomatic conversion. HIGHLIGHTS: We investigated brain network predictors of dementia symptom onset Frontotemporal dementia results in characteristic dynamic network patterns Alterations in network dynamics are associated with neuropsychological impairment Network dynamic changes predict symptomatic conversion in presymptomatic carriers Network dynamic changes are associated with longitudinal cognitive decline.
Assuntos
Disfunção Cognitiva , Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico , Mutação/genética , Encéfalo , Disfunção Cognitiva/genética , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: Neurodegeneration in the locus coeruleus (LC) contributes to neuropsychiatric symptoms in both Parkinson's disease (PD) and progressive supranuclear palsy (PSP). Spatial precision of LC imaging is improved with ultrahigh field 7 T magnetic resonance imaging. OBJECTIVES: This study aimed to characterize the spatial patterns of LC pathological change in PD and PSP and the transdiagnostic relationship between LC signals and neuropsychiatric symptoms. METHODS: Twenty-five people with idiopathic PD, 14 people with probable PSP-Richardson's syndrome, and 24 age-matched healthy controls were recruited. Participants underwent clinical assessments and high-resolution (0.08 mm3 ) 7 T-magnetization-transfer imaging to measure LC integrity in vivo. Spatial patterns of LC change were obtained using subregional mean contrast ratios and significant LC clusters; we further correlated the LC contrast with measures of apathy and cognition, using both mixed-effect models and voxelwise analyses. RESULTS: PSP and PD groups showed significant LC degeneration in the caudal subregion relative to controls. Mixed-effect models revealed a significant interaction between disease-group and apathy-related correlations with LC degeneration (ß = 0.46, SE [standard error] = 0.17, F(1, 35) = 7.46, P = 0.01), driven by a strong correlation in PSP (ß = -0.58, SE = 0.21, t(35) = -2.76, P = 0.009). Across both disease groups, voxelwise analyses indicated that lower LC integrity was associated with worse cognition and higher apathy scores. CONCLUSIONS: The relationship between LC and nonmotor symptoms highlights a role for noradrenergic dysfunction across both PD and PSP, confirming the potential for noradrenergic therapeutic strategies to address transdiagnostic cognitive and behavioral features in neurodegenerative disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Locus Cerúleo , Transtornos Parkinsonianos , Apatia/fisiologia , Cognição/fisiologia , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/fisiopatologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/fisiopatologiaRESUMO
Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomized crossover design, 19 patients with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7 T imaging of the locus coeruleus using a neuromelanin-sensitive magnetization transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in patients with Parkinson's disease. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalized treatment approaches.
Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Cloridrato de Atomoxetina/farmacologia , Inibição Psicológica , Locus Cerúleo/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Idoso , Método Duplo-Cego , Feminino , Humanos , Locus Cerúleo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tempo de Reação/efeitos dos fármacosRESUMO
BACKGROUND: First-degree relatives of people with dementia (FH+) are at increased risk of developing Alzheimer's disease (AD). Here, we investigate "estimated years to onset of dementia" (EYO) as a surrogate marker of preclinical disease progression and assess its associations with multi-modal neuroimaging biomarkers. METHODS: 89 FH+ participants in the PREVENT-Dementia study underwent longitudinal MR imaging over 2 years. EYO was calculated as the difference between the parental age of dementia diagnosis and the current age of the participant (mean EYO = 23.9 years). MPRAGE, ASL and DWI data were processed using Freesurfer, FSL-BASIL and DTI-TK. White matter lesion maps were segmented from FLAIR scans. The SPM Sandwich Estimator Toolbox was used to test for the main effects of EYO and interactions between EYO, Time, and APOE-ε4+. Threshold free cluster enhancement and family wise error rate correction (TFCE FWER) was performed on voxelwise statistical maps. RESULTS: There were no significant effects of EYO on regional grey matter atrophy or white matter hyperintensities. However, a shorter EYO was associated with lower white matter Fractional Anisotropy and elevated Mean/Radial Diffusivity, particularly in the corpus callosum (TFCEFWERp < 0.05). The influence of EYO on white matter deficits were significantly stronger compared to that of normal ageing. APOE-ε4 carriers exhibited hyperperfusion with nearer proximity to estimated onset in temporo-parietal regions. There were no interactions between EYO and time, suggesting that EYO was not associated with accelerated imaging changes in this sample. CONCLUSIONS: Amongst cognitively normal midlife adults with a family history of dementia, a shorter hypothetical proximity to dementia onset may be associated with incipient brain abnormalities, characterised by white matter disruptions and perfusion abnormalities, particularly amongst APOE-ε4 carriers. Our findings also confer biological validity to the construct of EYO as a potential stage marker of preclinical progression in the context of sporadic dementia. Further clinical follow-up of our longitudinal sample would provide critical validation of these findings.
Assuntos
Encéfalo/diagnóstico por imagem , Demência/diagnóstico por imagem , Demência/prevenção & controle , Imagem Multimodal/métodos , Adulto , Idade de Início , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Apolipoproteína E4/genética , Demência/epidemiologia , Demência/genética , Imagem de Tensor de Difusão/métodos , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Reino Unido/epidemiologiaRESUMO
Early and profound pathological changes are evident in the locus coeruleus (LC) in dementia and Parkinson's disease, with effects on arousal, attention, cognitive and motor control. The LC can be identified in vivo using non-invasive magnetic resonance imaging techniques which have potential as biomarkers for detecting and monitoring disease progression. Technical limitations of existing imaging protocols have impaired the sensitivity to regional contrast variance or the spatial variability on the rostrocaudal extent of the LC, with spatial mapping consistent with post mortem findings. The current study employs a sensitive magnetisation transfer sequence using ultrahigh field 7T MRI to investigate the LC structure in vivo at high-resolution (0.4 × 0.4 × 0.5 mm). Magnetisation transfer images from 53 healthy older volunteers (52 - 84 years) clearly revealed the spatial features of the LC and were used to create a probabilistic LC atlas for older adults. This atlas may be especially relevant for studying disorders associated with older age. To use the atlas does not require use of the same MT sequence of 7T MRI, provided good co-registration and normalisation is achieved. Consistent rostrocaudal gradients of slice-wise volume, contrast and variance along the LC were observed, mirroring distinctive ex vivo spatial distributions of LC cells in its subregions. The contrast-to-noise ratios were calculated for the peak voxels, and for the averaged signals within the atlas, to accommodate the volumetric differences in estimated contrast. The probabilistic atlas is freely available, and the MRI dataset will be made available for non-commercial research, for replication or to facilitate accurate LC localisation and unbiased contrast extraction in future studies.
Assuntos
Locus Cerúleo/anatomia & histologia , Locus Cerúleo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: We examined the relationship between tau pathology and neuroinflammation using [11 C]PK11195 and [18 F]AV-1451 PET in 17 patients with progressive supranuclear palsy (PSP) Richardson's syndrome. We tested the hypothesis that neuroinflammation and tau protein aggregation colocalize macroscopically, and correlate with clinical severity. METHODS: Nondisplaceable binding potential (BPND ) for each ligand was quantified in 83 regions of interest (ROIs). The [11 C]PK11195 and [18 F]AV-1451 BPND values were correlated across all regions. The spatial distributions of [11 C]PK11195 and [18 F]AV-1451 binding were determined by principal component analyses (PCAs), and the loading of each spatial component compared against the patients' clinical severity (using the PSP rating scale). RESULTS: Regional [11 C]PK11195 and [18 F]AV-1451 binding were positively correlated (R = 0.577, p < 0.0001). The PCA identified 4 components for each ligand, reflecting the relative expression of tau pathology or neuroinflammation in distinct groups of brain regions. Positive associations between [11 C]PK11195 and [18 F]AV-1451 components' loadings were found in both subcortical (R = 0.769, p < 0.0001) and cortical regions (R = 0.836, p < 0.0001). There were positive correlations between clinical severity and both subcortical tau pathology (R = 0.667, p = 0.003) and neuroinflammation (R = 0.788, p < 0.001). INTERPRETATION: We show that tau pathology and neuroinflammation colocalize in PSP, and that individual differences in subcortical tau pathology and neuroinflammation are linked to clinical severity. Although longitudinal studies are needed to determine causal associations between these molecular pathologies, we suggest that the combination of tau- and immune-oriented strategies may be useful for effective disease-modifying treatments in PSP. ANN NEUROL 2020;88:1194-1204.
Assuntos
Encéfalo/metabolismo , Carbolinas/metabolismo , Isoquinolinas/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/metabolismo , Idoso , Radioisótopos de Carbono , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Tomografia por Emissão de Pósitrons , Índice de Gravidade de DoençaRESUMO
OBJECTIVE: To test the hypothesis that in syndromes associated with frontotemporal lobar degeneration, behavioural impairment predicts loss of functional independence and motor clinical features predict mortality, irrespective of diagnostic group. METHODS: We used a transdiagnostic approach to survival in an epidemiological cohort in the UK, testing the association between clinical features, independence and survival in patients with clinical diagnoses of behavioural variant frontotemporal dementia (bvFTD n=64), non-fluent variant primary progressive aphasia (nfvPPA n=36), semantic variant primary progressive aphasia (svPPA n=25), progressive supranuclear palsy (PSP n=101) and corticobasal syndrome (CBS n=68). A principal components analysis identified six dimensions of clinical features. Using Cox proportional hazards and logistic regression, we identified the association between each of these dimensions and both functionally independent survival (time from clinical assessment to care home admission) and absolute survival (time to death). Analyses adjusted for the covariates of age, gender and diagnostic group. Secondary analysis excluded specific diagnostic groups. RESULTS: Behavioural disturbance, including impulsivity and apathy, was associated with reduced functionally independent survival (OR 2.46, p<0.001), even if patients with bvFTD were removed from the analysis. Motor impairments were associated with reduced absolute survival, even if patients with PSP and CBS were removed from the analysis. CONCLUSION: Our results can assist individualised prognostication and planning of disease-modifying trials, and they support a transdiagnostic approach to symptomatic treatment trials in patients with clinical syndromes associated with frontotemporal lobar degeneration.
Assuntos
Apatia/fisiologia , Cognição/fisiologia , Degeneração Lobar Frontotemporal/mortalidade , Comportamento Impulsivo/fisiologia , Afeto/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Degeneração Lobar Frontotemporal/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Autocuidado , Taxa de SobrevidaRESUMO
Behavioural disinhibition is a common feature of the syndromes associated with frontotemporal lobar degeneration (FTLD). It is associated with high morbidity and lacks proven symptomatic treatments. A potential therapeutic strategy is to correct the neurotransmitter deficits associated with FTLD, thereby improving behaviour. Reductions in the neurotransmitters glutamate and GABA correlate with impulsive behaviour in several neuropsychiatric diseases and there is post-mortem evidence of their deficit in FTLD. Here, we tested the hypothesis that prefrontal glutamate and GABA levels are reduced by FTLD in vivo, and that their deficit is associated with impaired response inhibition. Thirty-three participants with a syndrome associated with FTLD (15 patients with behavioural variant frontotemporal dementia and 18 with progressive supranuclear palsy, including both Richardson's syndrome and progressive supranuclear palsy-frontal subtypes) and 20 healthy control subjects were included. Participants undertook ultra-high field (7 T) magnetic resonance spectroscopy and a stop-signal task of response inhibition. We measured glutamate and GABA levels using semi-LASER magnetic resonance spectroscopy in the right inferior frontal gyrus, because of its strong association with response inhibition, and in the primary visual cortex, as a control region. The stop-signal reaction time was calculated using an ex-Gaussian Bayesian model. Participants with frontotemporal dementia and progressive supranuclear palsy had impaired response inhibition, with longer stop-signal reaction times compared with controls. GABA concentration was reduced in patients versus controls in the right inferior frontal gyrus, but not the occipital lobe. There was no group-wise difference in partial volume corrected glutamate concentration between patients and controls. Both GABA and glutamate concentrations in the inferior frontal gyrus correlated inversely with stop-signal reaction time, indicating greater impulsivity in proportion to the loss of each neurotransmitter. We conclude that the glutamatergic and GABAergic deficits in the frontal lobe are potential targets for symptomatic drug treatment of frontotemporal dementia and progressive supranuclear palsy.
Assuntos
Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/psicologia , Glutamatos/deficiência , Inibição Psicológica , Neurotransmissores/deficiência , Ácido gama-Aminobutírico/deficiência , Idoso , Idoso de 80 Anos ou mais , Feminino , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Glutamatos/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Neurotransmissores/metabolismo , Tempo de Reação , Paralisia Supranuclear Progressiva/metabolismo , Córtex Visual/diagnóstico por imagem , Córtex Visual/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
Tau pathology, neuroinflammation, and neurodegeneration are key aspects of Alzheimer's disease. Understanding whether these features predict cognitive decline, alone or in combination, is crucial to develop new prognostic measures and enhanced stratification for clinical trials. Here, we studied how baseline assessments of in vivo tau pathology (measured by 18F-AV-1451 PET), neuroinflammation (measured by 11C-PK11195 PET) and brain atrophy (derived from structural MRI) predicted longitudinal cognitive changes in patients with Alzheimer's disease pathology. Twenty-six patients (n = 12 with clinically probable Alzheimer's dementia and n = 14 with amyloid-positive mild cognitive impairment) and 29 healthy control subjects underwent baseline assessment with 18F-AV-1451 PET, 11C-PK11195 PET, and structural MRI. Cognition was examined annually over the subsequent 3 years using the revised Addenbrooke's Cognitive Examination. Regional grey matter volumes, and regional binding of 18F-AV-1451 and 11C-PK11195 were derived from 15 temporo-parietal regions characteristically affected by Alzheimer's disease pathology. A principal component analysis was used on each imaging modality separately, to identify the main spatial distributions of pathology. A latent growth curve model was applied across the whole sample on longitudinal cognitive scores to estimate the rate of annual decline in each participant. We regressed the individuals' estimated rate of cognitive decline on the neuroimaging components and examined univariable predictive models with single-modality predictors, and a multi-modality predictive model, to identify the independent and combined prognostic value of the different neuroimaging markers. Principal component analysis identified a single component for the grey matter atrophy, while two components were found for each PET ligand: one weighted to the anterior temporal lobe, and another weighted to posterior temporo-parietal regions. Across the whole-sample, the single-modality models indicated significant correlations between the rate of cognitive decline and the first component of each imaging modality. In patients, both stepwise backward elimination and Bayesian model selection revealed an optimal predictive model that included both components of 18F-AV-1451 and the first (i.e. anterior temporal) component for 11C-PK11195. However, the MRI-derived atrophy component and demographic variables were excluded from the optimal predictive model of cognitive decline. We conclude that temporo-parietal tau pathology and anterior temporal neuroinflammation predict cognitive decline in patients with symptomatic Alzheimer's disease pathology. This indicates the added value of PET biomarkers in predicting cognitive decline in Alzheimer's disease, over and above MRI measures of brain atrophy and demographic data. Our findings also support the strategy for targeting tau and neuroinflammation in disease-modifying therapy against Alzheimer's disease.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Microglia/patologia , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodosRESUMO
The clinical syndromes of frontotemporal dementia are clinically and neuropathologically heterogeneous, but processes such as neuroinflammation may be common across the disease spectrum. We investigated how neuroinflammation relates to the localization of tau and TDP-43 pathology, and to the heterogeneity of clinical disease. We used PET in vivo with (i) 11C-PK-11195, a marker of activated microglia and a proxy index of neuroinflammation; and (ii) 18F-AV-1451, a radioligand with increased binding to pathologically affected regions in tauopathies and TDP-43-related disease, and which is used as a surrogate marker of non-amyloid-ß protein aggregation. We assessed 31 patients with frontotemporal dementia (10 with behavioural variant, 11 with the semantic variant and 10 with the non-fluent variant), 28 of whom underwent both 18F-AV-1451 and 11C-PK-11195 PET, and matched control subjects (14 for 18F-AV-1451 and 15 for 11C-PK-11195). We used a univariate region of interest analysis, a paired correlation analysis of the regional relationship between binding distributions of the two ligands, a principal component analysis of the spatial distributions of binding, and a multivariate analysis of the distribution of binding that explicitly controls for individual differences in ligand affinity for TDP-43 and different tau isoforms. We found significant group-wise differences in 11C-PK-11195 binding between each patient group and controls in frontotemporal regions, in both a regions-of-interest analysis and in the comparison of principal spatial components of binding. 18F-AV-1451 binding was increased in semantic variant primary progressive aphasia compared to controls in the temporal regions, and both semantic variant primary progressive aphasia and behavioural variant frontotemporal dementia differed from controls in the expression of principal spatial components of binding, across temporal and frontotemporal cortex, respectively. There was a strong positive correlation between 11C-PK-11195 and 18F-AV-1451 uptake in all disease groups, across widespread cortical regions. We confirmed this association with post-mortem quantification in 12 brains, demonstrating strong associations between the regional densities of microglia and neuropathology in FTLD-TDP (A), FTLD-TDP (C), and FTLD-Pick's. This was driven by amoeboid (activated) microglia, with no change in the density of ramified (sessile) microglia. The multivariate distribution of 11C-PK-11195 binding related better to clinical heterogeneity than did 18F-AV-1451: distinct spatial modes of neuroinflammation were associated with different frontotemporal dementia syndromes and supported accurate classification of participants. These in vivo findings indicate a close association between neuroinflammation and protein aggregation in frontotemporal dementia. The inflammatory component may be important in shaping the clinical and neuropathological patterns of the diverse clinical syndromes of frontotemporal dementia.