Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Energy (Oxf) ; 208: 118398, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32834423

RESUMO

'Energy efficiency first' is one of the key principles of the Energy Union, mainly due to it being the most cost effective way to reduce emissions, improving energy security, enhancing competitiveness and making energy consumption more affordable for all consumers. In light of the revised EU Energy Efficiency Directive, this paper discusses new developments brought by the EU together with the national case studies of Slovenia and Spain. Given that the paper has a specific focus on the industrial sector, it discusses the selected measures of the Energy Efficiency Directive, such as defined in Articles 7, 8, and 14, which are the most relevant to this sector. The paper also explores the newly issued integrated national energy and climate plans together with national measures and policies that support energy efficiency in industry, including the quantification of achieved and forecast energy savings in these two EU Member States.

2.
In Vivo ; 38(1): 1-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148045

RESUMO

This paper explores the crucial role of cryogenic mediums in driving breakthroughs within the biomedical sector. The objective was to investigate, critically discuss, and present the current knowledge and state-of-the-art practices, along with the challenges and perspectives of the most common applications. Through an extensive literature review, this work aims to supplement existing research, offering a comprehensive and up-to-date understanding of the subject. Biomedical research involving cryogenic mediums is advancing on multiple fronts, including the development of advanced medical technologies, clinical treatments for life-threatening conditions, high-quality biospecimen preservation, and antimicrobial interventions in industrial food processing. These advances open new horizons and present cutting-edge opportunities for research and the medical community. While the current body of evidence showcases the impressive impact of cryogenic mediums, such as nitrogen, helium, argon, and oxygen, on revolutionary developments, reaching definitive conclusions on their efficiency and safety remains challenging due to process complexity and research scarcity with a moderate certainty of evidence. Knowledge gaps further underline the need for additional studies to facilitate cryogenic research in developing innovative technological processes in biomedicine. These advancements have the potential to reshape the modern world and significantly enhance the quality of life for people worldwide.


Assuntos
Crioprotetores , Medicina , Humanos
3.
Cancers (Basel) ; 15(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686548

RESUMO

Breast cancer is the most commonly diagnosed type of cancer, accounting for approximately one in eight cancer diagnoses worldwide. In 2020, there were approximately 2.3 million new cases of breast cancer globally, resulting in around 685,000 deaths. Consequently, there is an ongoing need to develop innovative therapeutic approaches that can improve both clinical outcomes and patient quality of life. The use of ultra-low cryogenic temperatures, facilitated by cryogenic media such as liquid nitrogen, has revolutionized the biomedical field and opened up new possibilities for advanced clinical treatments, including cryosurgery. Cryosurgery has demonstrated its feasibility as a minimally invasive technique for destroying breast tumors and eliciting a significant antitumor immune response in the host. This feature sets cryosurgery apart from other ablative techniques. It has been shown to be well tolerated and effective, offering several advantages such as simplicity, the avoidance of general anesthesia, minimal pain, low morbidity, short recovery time, cost-effectiveness, and notably, improved aesthetic outcomes. The reviewed studies indicate that cryosurgery holds promise in the management of early-stage breast cancer and metastatic disease, especially in triple-negative and Her2-positive molecular subtypes in conjunction with checkpoint inhibitors and anti-Her2 antibodies, respectively. Furthermore, the effectiveness of cryosurgery in the management of ductal carcinoma in situ should be investigated as an alternative modality to surgery or surveillance. The minimally invasive nature of cryosurgery has the potential to significantly enhance the quality of life for patients.

4.
Sci Total Environ ; 751: 141755, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32889470

RESUMO

An issue of significant importance worldwide is the contamination of water with antibiotics giving rise to antibiotic resistance in the environment. Antibiotics such as tetracycline are widely used in agriculture, as such they can pollute water courses, providing a means by which environmental bacteria can evolve antibiotic resistance genes. Biochar can form part of a solution as it is a well-known adsorbent. This material can be efficient in the adsorption of a wide range of pollutants and is inexpensive. An innovative heat pipe reactor was used to produce biochar from excess food and garden materials. This biochar was characterised using scanning electron microscopy with energy dispersive X-ray analyser (SEM-EDAX), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The biochar produced had an adsorption capacity between 2.98 mg/g and 8.23 mg/g for initial tetracycline concentrations of 20 mg/l and 100 mg/l, respectively. The Freundlich isotherm provided the best fit to the experimental data. Kinetics examination revealed a rapid adsorption of tetracycline during the initial stages. The Elovich equation fitted the experimental data well. This adsorbent could therefore be produced at the site of an agricultural enterprise through the pyrolysis of agriculture waste and then used to reduce the infiltration of antibiotics into the environment.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Agricultura , Antibacterianos , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Tetraciclina
5.
Sci Total Environ ; 714: 136832, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018976

RESUMO

This paper investigates the adsorption of organic compounds in aqueous solution to biochar adsorbent, using methylene blue as an indicator for adsorption. Biochar was produced by the pyrolysis of mixed municipal discarded material in an innovative heat pipe reactor, the pyrolysis temperature was held at 300°C for 12 h. Biochar produced under these conditions was found to have oxygen containing functional groups that are beneficial to the adsorption of methylene blue as well as graphitic structures suggesting potential sites for π-π interactions with methylene blue. Methylene Blue followed the pseudo second order kinetic model with higher R2 values than both the pseudo first order kinetic and intraparticle diffusion models. The adsorption also closely fit the Langmuir isotherm rather than the Freundlich model, suggesting monolayer adsorption rather than multilayer adsorption. Maximum adsorption capacity was observed at 7.2 mg/g for initial concentration of 100 mg/l Methylene blue in aqueous solution. The amount of Methylene blue adsorbed increased with increasing initial concentration as expected. The adsorption mechanisms are likely π-π interactions between methylene blue and the graphitic structures in the biochar which are shown to be present in Raman spectroscopy, as well as electrostatic attraction and ionic bonding between negatively charged surface sites on the char and the positive charge on the dissolved methylene blue molecules. The results show that biochar obtained from mixed waste could be employed as a low-cost and effective tool in water treatment for the removal of basic dyes and potentially other organic impurities.


Assuntos
Carvão Vegetal , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno , Pirólise , Soluções , Poluentes Químicos da Água
6.
Sci Total Environ ; 673: 777-789, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31003106

RESUMO

Sustainable methods to produce filter materials are needed to remove a variety of pollutants found in water including organic compounds, heavy metals, and other harmful inorganic and biological contaminants. This study focuses on the removal of Cu(II) from copper aqueous solutions using non-activated char derived from the pyrolysis of mixed municipal discarded materials (MMDM) using a new heat pipe-based pyrolysis reactor. Adsorption experiments were conducted by adding the char to copper solutions of varying concentration (50-250 mg/L) at a constant temperature of 30 °C. The effect of pH on copper adsorption onto the char was also investigated in the range of pH 3 to 6. Copper removal using the char was found to be heavily dependent on pH, adsorption was observed to decrease below a pH of 4.5. However, the initial copper concentration had a little effect on the sorption of copper at high concentration solutions (above 100 mg/L). Overall, the biochar showed an effective copper adsorption capacity (4-5 mg/g) when using copper solutions with a concentration below100 mg/L and pH >4.5. Copper removal using the char tended to follow the pseudo second order kinetic model. Langmuir isothermal model was shown to be the closest fitting isotherm using the linearized Langmuir equation. However, the variety of feedstock used to produce the char led to a variation in results compared to other studies of more specific feedstocks.


Assuntos
Cobre/química , Eliminação de Resíduos , Resíduos Sólidos , Poluentes Químicos da Água/química , Carvão Vegetal/química , Cobre/análise , Pirólise , Poluentes Químicos da Água/análise
7.
Waste Manag ; 78: 1-7, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32559892

RESUMO

The most reasonable way to utilise sewage sludge in Europe is in energy production. In the process of thermochemical conversion of sewage sludge, combustible gas is produced. Studies of synthetic gas composition show that this gas contains various impurities, which must be cleaned before gas supply to the final user. Although there are many ways to clean toxic materials existing in the synthetic gas, the application of plasma treatment seems the most promising. Exposure to the high temperature of plasma changes the structure and the chemical composition of solid particulates existing in the gas. In this study on the synthetic gas, ESP cleaning efficiency, size and elemental analysis of solid particles collected from different parts of the experimental setup with a gasifier operating on a mixture of sludge and wood pellets were analysed. The results showed the difference in particle sizes and changes in elemental composition of particles collected from different parts of the experimental setup. It was determined that the synthetic gas obtained by gasification of a mixture of sludge and wood pellets contains a great concentration of solid particles, which leads to the total collection efficiency of an electrostatic precipitator being only about 60%.

8.
Sci Total Environ ; 639: 1268-1282, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929294

RESUMO

Significant growth of the human population is expected in the future. Hence, the pressure on the already scarce natural water resources is continuously increasing. This work is an overview of membrane and filtration methods for the removal of pollutants such as bacteria, viruses and heavy metals from surface water. Microfiltration/Ultrafiltration (MF/UF) can be highly effective in eliminating bacteria and/or act as pre-treatment before Nanofiltration/Reverse Osmosis (NF/RO) to reduce the possibility of fouling. However, MF/UF membranes are produced through relatively intensive procedures. Moreover, they can be modified with chemical additives to improve their performance. Therefore, MF/UF applicability in less developed countries can be limited. NF shows high removal capability of certain contaminants (e.g. pharmaceutically active compounds and ionic compounds). RO is necessary for desalination purposes in areas where sea water is used for drinking/sanitation. Nevertheless, NF/RO systems require pre-treatment of the influent, increased electrical supply and high level of technical expertise. Thus, they are often a highly costly addition for countries under development. Slow Sand Filtration (SSF) is a simple and easy-to-operate process for the retention of solids, microorganisms and heavy metals; land use is a limiting factor, though. Rapid Sand Filtration (RSF) is an alternative responding to the need for optimized land use. However, it requires prior and post treatment stages to prevent fouling. Especially after coating with metal-based additives, sand filtration can constitute an efficient and sustainable treatment option for developing countries. Granular activated carbon (GAC) adsorbs organic compounds that were not filtered in previous treatment stages. It can be used in conjunction with other methods (e.g. MF and SSF) to face pollution that results from potentially outdated water network (especially in less developed areas) and, hence, produce water of acceptable drinking quality. Future research can focus on the potential of GAC production from alternative sources (e.g. municipal waste). Given the high production/operation/maintenance cost of the NF/RO systems, more cost-effective but equally effective alternatives can be implemented: e.g. (electro)coagulation/flocculation followed by MF/UF, SSF before/after MF/UF, MF/UF before GAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA