Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(1): 181-92, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27321671

RESUMO

Local mRNA translation mediates the adaptive responses of axons to extrinsic signals, but direct evidence that it occurs in mammalian CNS axons in vivo is scant. We developed an axon-TRAP-RiboTag approach in mouse that allows deep-sequencing analysis of ribosome-bound mRNAs in the retinal ganglion cell axons of the developing and adult retinotectal projection in vivo. The embryonic-to-postnatal axonal translatome comprises an evolving subset of enriched genes with axon-specific roles, suggesting distinct steps in axon wiring, such as elongation, pruning, and synaptogenesis. Adult axons, remarkably, have a complex translatome with strong links to axon survival, neurotransmission, and neurodegenerative disease. Translationally co-regulated mRNA subsets share common upstream regulators, and sequence elements generated by alternative splicing promote axonal mRNA translation. Our results indicate that intricate regulation of compartment-specific mRNA translation in mammalian CNS axons supports the formation and maintenance of neural circuits in vivo.


Assuntos
Axônios/metabolismo , Biossíntese de Proteínas , Proteoma/metabolismo , Células Ganglionares da Retina/metabolismo , Processamento Alternativo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteoma/análise , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Colículos Superiores/metabolismo , Transmissão Sináptica
2.
Cell ; 157(1): 26-40, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24679524

RESUMO

The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function.


Assuntos
Biossíntese de Proteínas , Proteínas/genética , Proteínas/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Animais , Humanos , Doenças do Sistema Nervoso/embriologia , Doenças do Sistema Nervoso/metabolismo , Proteínas/química
3.
Cell ; 148(4): 752-64, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341447

RESUMO

Local protein synthesis plays a key role in regulating stimulus-induced responses in dendrites and axons. Recent genome-wide studies have revealed that thousands of different transcripts reside in these distal neuronal compartments, but identifying those with functionally significant roles presents a challenge. We performed an unbiased screen to look for stimulus-induced, protein synthesis-dependent changes in the proteome of Xenopus retinal ganglion cell (RGC) axons. The intermediate filament protein lamin B2 (LB2), normally associated with the nuclear membrane, was identified as an unexpected major target. Axonal ribosome immunoprecipitation confirmed translation of lb2 mRNA in vivo. Inhibition of lb2 mRNA translation in axons in vivo does not affect guidance but causes axonal degeneration. Axonal LB2 associates with mitochondria, and LB2-deficient axons exhibit mitochondrial dysfunction and defects in axonal transport. Our results thus suggest that axonally synthesized lamin B plays a crucial role in axon maintenance by promoting mitochondrial function.


Assuntos
Axônios/metabolismo , Lamina Tipo B/metabolismo , Mitocôndrias/metabolismo , Células Ganglionares da Retina/metabolismo , Xenopus laevis/embriologia , Animais , Transporte Axonal , Embrião não Mamífero/metabolismo , Biossíntese de Proteínas , Xenopus laevis/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(21): e2321388121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748583

RESUMO

Protocadherin19 (PCDH19)-related epilepsy syndrome is a rare disorder characterized by early-onset epilepsy, intellectual disability, and autistic behaviors. PCDH19 is located on the X chromosome and encodes a calcium-dependent single-pass transmembrane protein, which regulates cell-to-cell adhesion through homophilic binding. In human, 90% of heterozygous females, containing PCDH19 wild-type and mutant cells due to random X inactivation, are affected, whereas mutant males, containing only mutant cells, are typically not. The current view, the cellular interference, is that the altered interactions between wild-type and mutant cells during development, rather than loss of function itself, are responsible. However, studies using Pcdh19 knockout mice showed that the complete loss of function also causes autism-like behaviors both in males and females, suggesting that other functions of PCDH19 may also contribute to pathogenesis. To address whether mosaicism is required for PCDH19-related epilepsy, we generated Xenopus tropicalis tadpoles with complete or mosaic loss of function by injecting antisense morpholino oligonucleotides into the blastomeres of neural lineage at different stages of development. We found that either mosaic or complete knockdown results in seizure-like behaviors, which could be rescued by antiseizure medication, and repetitive behaviors. Our results suggest that the loss of PCDH19 function itself, in addition to cellular interference, may also contribute to PCDH19-related epilepsy.


Assuntos
Caderinas , Epilepsia , Mosaicismo , Protocaderinas , Xenopus , Animais , Caderinas/genética , Caderinas/metabolismo , Feminino , Epilepsia/genética , Epilepsia/metabolismo , Masculino , Comportamento Animal , Humanos
5.
Mol Cell ; 70(1): 72-82.e7, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625039

RESUMO

During the maternal-to-zygotic transition (MZT), maternal RNAs are actively degraded and replaced by newly synthesized zygotic transcripts in a highly coordinated manner. However, it remains largely unknown how maternal mRNA decay is triggered in early vertebrate embryos. Here, through genome-wide profiling of RNA abundance and 3' modification, we show that uridylation is induced at the onset of maternal mRNA clearance. The temporal control of uridylation is conserved in vertebrates. When the homologs of terminal uridylyltransferases TUT4 and TUT7 (TUT4/7) are depleted in zebrafish and Xenopus, maternal mRNA clearance is significantly delayed, leading to developmental defects during gastrulation. Short-tailed mRNAs are selectively uridylated by TUT4/7, with the highly uridylated transcripts degraded faster during the MZT than those with unmodified poly(A) tails. Our study demonstrates that uridylation plays a crucial role in timely mRNA degradation, thereby allowing the progression of early development.


Assuntos
Embrião de Mamíferos/enzimologia , Embrião não Mamífero/enzimologia , Nucleotidiltransferases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transcriptoma , Xenopus laevis/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Camundongos Endogâmicos ICR , Nucleotidiltransferases/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
6.
J Neurosci ; 43(45): 7483-7488, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940588

RESUMO

Local protein synthesis in mature brain axons regulates the structure and function of presynaptic boutons by adjusting the presynaptic proteome to local demands. This crucial mechanism underlies experience-dependent modifications of brain circuits, and its dysregulation may contribute to brain disorders, such as autism and intellectual disability. Here, we discuss recent advancements in the axonal transcriptome, axonal RNA localization and translation, and the role of presynaptic local translation in synaptic plasticity and memory.


Assuntos
Axônios , Terminações Pré-Sinápticas , Axônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , Plasticidade Neuronal/fisiologia , Encéfalo/metabolismo
7.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062587

RESUMO

Recently, as air pollution and particulate matter worsen, the importance of a platform that can monitor the air environment is emerging. Especially, among air pollutants, nitrogen dioxide (NO2) is a toxic gas that can not only generate secondary particulate matter, but can also derive numerous toxic gases. To detect such NO2 gas at low concentration, we fabricated a GNWs/NiO-WO3/GNWs heterostructure-based gas sensor using microwave plasma-enhanced chemical vapor deposition (MPECVD) and sputter, and we confirmed the NO2 detection characteristics between 10 and 50 ppm at room temperature. The morphology and carbon lattice characteristics of the sensing layer were investigated using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. In the gas detection measurement, the resistance negative change according to the NO2 gas concentration was recorded. Moreover, it reacted even at low concentrations such as 5-7 ppm, and showed excellent recovery characteristics of more than 98%. Furthermore, it also showed a change in which the reactivity decreased with respect to humidity of 33% and 66%.

8.
J Cell Sci ; 129(10): 2030-42, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27044755

RESUMO

Vimentin, an intermediate filament protein induced during epithelial-to-mesenchymal transition, is known to regulate cell migration and invasion. However, it is still unclear how vimentin controls such behaviors. In this study, we aimed to find a new integrin regulator by investigating the H-Ras-mediated integrin suppression mechanism. Through a proteomic screen using the integrin ß3 cytoplasmic tail protein, we found that vimentin might work as an effector of H-Ras signaling. H-Ras converted filamentous vimentin into aggregates near the nucleus, where no integrin binding can occur. In addition, an increase in the amount of vimentin filaments accessible to the integrin ß3 tail enhanced talin-induced integrin binding to its ligands by inducing integrin clustering. In contrast, the vimentin head domain, which was found to bind directly to the integrin ß3 tail and compete with endogenous vimentin filaments for integrin binding, induced nuclear accumulation of vimentin filaments and reduced the amount of integrin-ligand binding. Finally, we found that expression of the vimentin head domain can reduce cell migration and metastasis. From these data, we suggest that filamentous vimentin underneath the plasma membrane is involved in increasing integrin adhesiveness, and thus regulation of the vimentin-integrin interaction might control cell adhesion.


Assuntos
Adesão Celular/genética , Citoesqueleto/metabolismo , Integrina beta3/genética , Vimentina/genética , Animais , Células CHO , Membrana Celular/genética , Membrana Celular/metabolismo , Movimento Celular/genética , Cricetinae , Cricetulus , Citoesqueleto/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Integrina beta3/metabolismo , Ligantes , Ligação Proteica , Mapas de Interação de Proteínas , Proteômica , Vimentina/metabolismo
9.
Ann Neurol ; 82(3): 466-478, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28856709

RESUMO

OBJECTIVE: Rett syndrome (RTT) and epileptic encephalopathy (EE) are devastating neurodevelopmental disorders with distinct diagnostic criteria. However, highly heterogeneous and overlapping clinical features often allocate patients into the boundary of the two conditions, complicating accurate diagnosis and appropriate medical interventions. Therefore, we investigated the specific molecular mechanism that allows an understanding of the pathogenesis and relationship of these two conditions. METHODS: We screened novel genetic factors from 34 RTT-like patients without MECP2 mutations, which account for ∼90% of RTT cases, by whole-exome sequencing. The biological function of the discovered variants was assessed in cell culture and Xenopus tropicalis models. RESULTS: We identified a recurring de novo variant in GABAB receptor R2 (GABBR2) that reduces the receptor function, whereas different GABBR2 variants in EE patients possess a more profound effect in reducing receptor activity and are more responsive to agonist rescue in an animal model. INTERPRETATION: GABBR2 is a genetic factor that determines RTT- or EE-like phenotype expression depending on the variant positions. GABBR2-mediated γ-aminobutyric acid signaling is a crucial factor in determining the severity and nature of neurodevelopmental phenotypes. Ann Neurol 2017;82:466-478.


Assuntos
Mutação , Receptores de GABA-B/genética , Síndrome de Rett/genética , Espasmos Infantis/genética , Exoma , Genótipo , Células HEK293 , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Fenótipo , Transdução de Sinais/genética
10.
Nat Rev Neurosci ; 13(5): 308-24, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22498899

RESUMO

mRNAs can be targeted to specific neuronal subcellular domains, which enables rapid changes in the local proteome through local translation. This mRNA-based mechanism links extrinsic signals to spatially restricted cellular responses and can mediate stimulus-driven adaptive responses such as dendritic plasticity. Local mRNA translation also occurs in growing axons where it can mediate directional responses to guidance signals. Recent profiling studies have revealed that both growing and mature axons possess surprisingly complex and dynamic transcriptomes, thereby suggesting that axonal mRNA localization is highly regulated and has a role in a broad range of processes, a view that is increasingly being supported by new experimental evidence. Here, we review current knowledge on the roles and regulatory mechanisms of axonal mRNA translation and discuss emerging links to axon guidance, survival, regeneration and neurological disorders.


Assuntos
Axônios/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Animais , Axônios/patologia , Axônios/fisiologia , Sobrevivência Celular/genética , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Biossíntese de Proteínas/genética
11.
Arterioscler Thromb Vasc Biol ; 36(7): 1406-16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27199448

RESUMO

OBJECTIVE: Angiogenesis, the process of building complex vascular structures, begins with sprout formation on preexisting blood vessels, followed by extension of the vessels through proliferation and migration of endothelial cells. Based on the potential therapeutic benefits of preventing angiogenesis in pathological conditions, many studies have focused on the mechanisms of its initiation as well as control. However, how the extension of vessels is terminated remains obscure. Thus, we investigated the negative regulation mechanism. APPROACH AND RESULTS: We report that increased intracellular calcium can induce dephosphorylation of the endothelial receptor tyrosine kinase Tie2. The calcium-mediated dephosphorylation was found to be dependent on Tie2-calmodulin interaction. The Tyr1113 residue in the C-terminal end loop of the Tie2 kinase domain was mapped and found to be required for this interaction. Moreover, mutation of this residue into Phe impaired both the Tie2-calmodulin interaction and calcium-mediated Tie2 dephosphorylation. Furthermore, expressing a mutant Tie2 incapable of binding to calmodulin or inhibiting calmodulin function in vivo causes unchecked growth of the vasculature in Xenopus. Specifically, knockdown of Tie2 in Xenopus embryo retarded the sprouting and extension of intersomitic veins. Although human Tie2 expression in the Tie2-deficient animals almost completely rescued the retardation, the Tie2(Y1113F) mutant caused overgrowth of intersomitic veins with strikingly complex and excessive branching patterns. CONCLUSIONS: We propose that the calcium/calmodulin-dependent negative regulation of Tie2 can be used as an inhibitory signal for vessel growth and branching to build proper vessel architecture during embryonic development.


Assuntos
Sinalização do Cálcio , Calmodulina/metabolismo , Embrião não Mamífero/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Receptor TIE-2/metabolismo , Xenopus/embriologia , Animais , Células CHO , Cricetulus , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genótipo , Células HEK293 , Humanos , Mutação , Fenótipo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptor TIE-2/genética , Transfecção , Tirosina , Xenopus/genética , Xenopus/metabolismo
12.
Neuron ; 111(5): 650-668.e4, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584679

RESUMO

Localized mRNA translation regulates synapse function and axon maintenance, but how compartment-specific mRNA repertoires are regulated is largely unknown. We developed an axonal transcriptome capture method that allows deep sequencing of metabolically labeled mRNAs from retinal ganglion cell axon terminals in mouse. Comparing axonal-to-somal transcriptomes and axonal translatome-to-transcriptome enables genome-wide visualization of mRNA transport and translation and unveils potential regulators tuned to each process. FMRP and TDP-43 stand out as key regulators of transport, and experiments in Fmr1 knockout mice validate FMRP's role in the axonal transportation of synapse-related mRNAs. Pulse-and-chase experiments enable genome-wide assessment of mRNA stability in axons and reveal a strong coupling between mRNA translation and decay. Measuring the absolute mRNA abundance per axon terminal shows that the adult axonal transcriptome is stably maintained by persistent transport. Our datasets provide a rich resource for unique insights into RNA-based mechanisms in maintaining presynaptic structure and function in vivo.


Assuntos
Axônios , Sistema Nervoso Central , Animais , Camundongos , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Mamíferos/genética , Mamíferos/metabolismo , RNA/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo
13.
Theranostics ; 13(14): 5075-5098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771778

RESUMO

Background: Exploiting synthetic lethality (SL) relationships between protein pairs has emerged as an important avenue for the development of anti-cancer drugs. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme of the NAD+ salvage pathway, having an SL relationship with nicotinic acid phosphoribosyltransferase (NAPRT), the key enzyme in the NAD+ Preiss-Handler pathway. NAMPT inhibitor holds clinical potential not only as a promising cancer treatment but also as a means of protection against chemotherapy-induced-peripheral-neuropathy (CIPN). However, as NAD+ is essential for normal cells, the clinical use of NAMPT inhibitors is challenging. This study aimed to identify a novel NAMPT inhibitor with enhanced selective cytotoxicity against NAPRT-deficient cancer cells as well as prominent efficacy in alleviating CIPN. Methods: We began by conducting drug derivatives screening in a panel of lung cancer cell lines to select an agent with the broadest therapeutic window between the NAPRT-negative and-positive cancer cell lines. Both in vitro and In vivo comparative analyses were conducted between A4276 and other NAMPT inhibitors to evaluate the NAPRT-negative cancer cell selectivity and the underlying distinct NAMPT inhibition mechanism of A4276. Patient-derived tumor transcriptomic data and protein levels in various cancer cell lines were analyzed to confirm the correlation between NAPRT depletion and epithelial-to-mesenchymal transition (EMT)-like features in various cancer types. Finally, the efficacy of A4276 for axonal protection and CIPN remedy was examined in vitro and in vivo. Results: The biomarker-driven phenotypic screening led to a discovery of A4276 with prominent selectivity against NAPRT-negative cancer cells compared with NAPRT-positive cancer cells and normal cells. The cytotoxic effect of A4276 on NAPRT-negative cells is achieved through its direct binding to NAMPT, inhibiting its enzymatic function at an optimal and balanced level allowing NAPRT-positive cells to survive through NAPRT-dependent NAD+ synthesis. NAPRT deficiency serves as a biomarker for the response to A4276 as well as an indicator of EMT-subtype cancer in various tumor types. Notably, A4276 protects axons from Wallerian degeneration more effectively than other NAMPT inhibitors by decreasing NMN-to-NAD+ ratio. Conclusion: This study demonstrates that A4276 selectively targets NAPRT-deficient EMT-subtype cancer cells and prevents chemotherapy-induced peripheral neuropathy, highlighting its potential as a promising anti-cancer agent for use in cancer monotherapy or combination therapy with conventional chemotherapeutics.

14.
Am J Physiol Cell Physiol ; 302(4): C698-708, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22075695

RESUMO

Homozygous ataxic mice (ax(J)) express reduced levels of the deubiquitinating enzyme Usp14. They develop severe tremors by 2-3 wk of age, followed by hindlimb paralysis, and death by 6-8 wk. While changes in the ubiquitin proteasome system often result in the accumulation of ubiquitin protein aggregates and neuronal loss, these pathological markers are not observed in the ax(J) mice. Instead, defects in neurotransmission were observed in both the central and peripheral nervous systems of ax(J) mice. We have now identified several new alterations in peripheral neurotransmission in the ax(J) mice. Using the two-microelectrode voltage clamp technique on diaphragm muscles of ax(J) mice, we observed that under normal neurotransmitter release conditions ax(J) mice lacked paired-pulse facilitation and exhibited a frequency-dependent increase in rundown of the end plate current at high-frequency stimulation (HFS). Combined electrophysiology and styryl dye staining revealed a significant reduction in quantal content during the initial and plateau portions of the HFS train. In addition, uptake of styryl dyes (FM dye) during HFS demonstrated that the size of the readily releasable vesicle pool was significantly reduced. Destaining rates for styryl dyes suggested that ax(J) neuromuscular junctions are unable to mobilize a sufficient number of vesicles during times of intense activity. These results imply that ax(J) nerve terminals are unable to recruit a sufficient number of vesicles to keep pace with physiological rates of transmitter release. Therefore, ubiquitination of synaptic proteins appears to play an important role in the normal operation of the neurotransmitter release machinery and in regulating the size of pools of synaptic vesicles.


Assuntos
Ataxia/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Periférico/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Ubiquitina Tiolesterase/deficiência , Potenciais de Ação , Animais , Ataxia/genética , Ataxia/patologia , Ataxia/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Diafragma/citologia , Diafragma/metabolismo , Estimulação Elétrica , Corantes Fluorescentes/análise , Deleção de Genes , Homozigoto , Camundongos , Camundongos Knockout , Junção Neuromuscular/citologia , Junção Neuromuscular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Sistema Nervoso Periférico/patologia , Sistema Nervoso Periférico/fisiopatologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Músculos Respiratórios/citologia , Músculos Respiratórios/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação/fisiologia
16.
Anim Cells Syst (Seoul) ; 26(4): 137-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046030

RESUMO

Recent technological advance in single-cell and single-nucleus transcriptomics has made it possible to generate an unprecedentedly detailed landscape of neuro-immune interactions in healthy and diseased brains. In this review, we overview the recent literature that catalogs single-cell-level gene expression in brains with signs of inflammation, focusing on maternal immune activation, viral infection, and auto-immune diseases. The literature also includes a series of papers that provide strong evidence for immunological contributions to neurodegenerative diseases, which, in a strict sense, are not considered neuroinflammatory. To help with the discussion, we present a diagram of experimental and analytical flows in the single-cell analysis of the brain. We also discuss the recurring themes of neuro-immune interactions and suggest future research directions.

17.
Mol Cells ; 45(11): 846-854, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36380734

RESUMO

Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.


Assuntos
Placenta , Células Ganglionares da Retina , Feminino , Gravidez , Animais , Células Ganglionares da Retina/metabolismo , Axônios/fisiologia , Xenopus , Xenopus laevis , Mamíferos
18.
Neurobiol Dis ; 44(1): 19-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21684336

RESUMO

Enhancing the ability of either endogenous or transplanted oligodendrocyte progenitors (OPs) to engage in myelination may constitute a novel therapeutic approach to demyelinating diseases of the brain. It is known that in adults neural progenitors situated in the subventricular zone of the lateral ventricle (SVZ) are capable of generating OPs which can migrate into white matter tracts such as the corpus callosum (CC). We observed that progenitor cells in the SVZ of adult mice expressed CXCR4 chemokine receptors and that the chemokine SDF-1/CXCL12 was expressed in the CC. We therefore investigated the role of chemokine signaling in regulating the migration of OPs into the CC following their transplantation into the lateral ventricle. We established OP cell cultures from Olig2-EGFP mouse brains. These cells expressed a variety of chemokine receptors, including CXCR4 receptors. Olig2-EGFP OPs differentiated into CNPase-expressing oligodendrocytes in culture. To study the migratory capacity of Olig2-EGFP OPs in vivo, we transplanted them into the lateral ventricles of mice. Donor cells migrated into the CC and differentiated into mature oligodendrocytes. This migration was enhanced in animals with Experimental Autoimmune Encephalomyelitis (EAE). Inhibition of CXCR4 receptor expression in OPs using shRNA inhibited the migration of transplanted OPs into the white matter suggesting that their directed migration is regulated by CXCR4 signaling. These findings indicate that CXCR4 mediated signaling is important in guiding the migration of transplanted OPs in the context of inflammatory demyelinating brain disease.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Células-Tronco Neurais/transplante , Oligodendroglia/transplante , Receptores CXCR4/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Quimiocinas/fisiologia , Regulação para Baixo/genética , Encefalomielite Autoimune Experimental/patologia , Imuno-Histoquímica , Ventrículos Laterais/citologia , Camundongos , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , RNA/genética , Receptores CXCR4/genética , Receptores de Quimiocinas/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas Estereotáxicas
19.
J Neuroinflammation ; 8: 16, 2011 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-21324162

RESUMO

BACKGROUND: Stromal cell-derived factor-1 (SDF1) and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. METHODS: These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. RESULTS: In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST) as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI), the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. CONCLUSIONS: These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the SDF1 signaling system may be important for regulating the inflammatory response after SCI.


Assuntos
Movimento Celular/fisiologia , Quimiocina CXCL12/metabolismo , Tratos Piramidais/metabolismo , Receptores CXCR4/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Quimiocina CXCL12/genética , Camundongos , Camundongos Transgênicos , Receptores CXCR4/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/patologia
20.
Brain Behav Immun ; 25(3): 565-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193025

RESUMO

Morphine and related compounds are the first line of therapy in the treatment of moderate to severe pain. Over time, individuals taking opioids can develop an increasing sensitivity to noxious stimuli, even evolving into a painful response to previously non-noxious stimuli (opioid-induced hyperalgesia; OIH). The mechanism underlying OIH is not well understood although complex intracellular neural mechanisms, including opioid receptor desensitization and down-regulation, are believed to be major mechanisms underlying OIH. However, OIH may also be associated with changes in gene expression. A growing body of evidence suggests that cellular exposure to mu agonists upregulate chemokines/receptors and recent work from our laboratory implicates chemokine upregulation in a variety of neuropathic pain behaviors. Here we characterized the degree to which chemokines/receptors signaling is increased in primary afferent neurons of the dorsal root ganglion (DRG) following chronic morphine sulfate treatment and correlated these changes with tactile hyperalgesic behavior in rodents. We demonstrate that mRNA expression of the chemokine, stromal-derived factor-1 (SDF1/CXCL12) is upregulated following morphine treatment in sensory neurons of the rat. The release of SDF1 was found to be constitutive when compared with the activity dependent release of the C-C chemokine, monocyte chemoattractant protein-1 (MCP1/CCL2) in a line of F11 neuroblastoma-sensory neuron hybrid cells. We further determined that there is pronounced CXCR4 expression in satellite glial cells and following morphine treatment, increased functional CXCR4 expression in sensory neurons of the DRG. Moreover, intraperitoneal administration of the specific CXCR4 antagonist, AMD3100, completely reversed OIH in the rat. Taken together; the data suggest that opioid-induced SDF1/CXCR4 signaling is central to the development of long lasting OIH and that receptor antagonists represent a promising novel approach to the management of the side effects associated with the use of opioids for chronic pain management.


Assuntos
Hiperalgesia/metabolismo , Receptores CXCR4/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Cálcio/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Hiperalgesia/induzido quimicamente , Imuno-Histoquímica , Hibridização In Situ , Morfina/administração & dosagem , Entorpecentes/administração & dosagem , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estimulação Física , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA