Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 96: 129504, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838342

RESUMO

This study aimed to explore non-pyridinium oxime acetylcholinesterase (AChE) reactivators that could hold the potential to overcome the limitations of the currently available compounds used in the clinic to treat the neurologic manifestations induced by intoxication with organophosphorus agents. Fifteen compounds with various non-pyridinium oxime moieties were evaluated for AChE activity at different concentrations, including aldoximes, ketoximes, and α-ketoaldoximes. The therapeutic potential of the oxime compounds was evaluated by assessing their ability to reactivate AChE inhibited by paraoxon. Among the tested compounds, α-Ketoaldoxime derivative 13 showed the highest reactivation (%) reaching 67 % and 60 % AChE reactivation when evaluated against OP-inhibited electric eel AChE at concentrations of 1,000 and 100 µM, respectively. Compound 13 showed a comparable reactivation ability of AChE (60 %) compared to that of pralidoxime (56 %) at concentrations of 100 µM. Molecular docking simulation of the most active compounds 12 and 13 was conducted to predict the binding mode of the reactivation of electric eel AChE. As a result, a non-pyridinium oxime moiety 13, is a potential reactivator of OP-inhibited AChE and is taken as a lead compound for the development of novel AChE reactivators with enhanced capacity to freely cross the blood-brain barrier.


Assuntos
Reativadores da Colinesterase , Oximas , Oximas/farmacologia , Oximas/química , Paraoxon/farmacologia , Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Acetamidas , Compostos Organofosforados/química
2.
Bioorg Med Chem Lett ; 64: 128673, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292344

RESUMO

Small-molecule inhibitors exhibiting broad-spectrum enteroviral inhibition by targeting viral replication proteins are highly desirable in antiviral drug discovery. We used the previously identified antiviral compound 1 as the starting material to develop a novel compound series with high efficacy against human rhinovirus (hRV). Further optimization of N-substituted triazolopyrimidinone derivatives revealed that the N-alkyl triazolopyrimidinone derivatives (2) had more potent antiviral activity against hRVs than compound 1. The new compounds showed improved selectivity index values, and compound 2c (KR-25210) displayed broad anti-hRV activity, with half-maximal effective concentration values ≤ 2 µM against all tested hRVs. In addition, 2c showed notable activity against other enteroviruses. Drug-likeness elucidation showed that 2c exhibited reasonable human and rat liver microsomal phase-I stability and safe CYP inhibition. Replication studies revealed that 2c is not a capsid inhibitor, and a time-of-addition assay indicated that 2c targets the virus replication stages.


Assuntos
Infecções por Enterovirus , Enterovirus , Animais , Antivirais/química , Capsídeo/metabolismo , Infecções por Enterovirus/tratamento farmacológico , Purinas , Ratos , Rhinovirus , Replicação Viral
3.
Bioorg Med Chem Lett ; 42: 128067, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957246

RESUMO

The outbreak of coronavirus (CoV) disease 2019 (COVID-19) caused by the severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has turned into a pandemic. The enzyme 3C-like protease (3CLpro) is essential for the maturation of viral polyproteins in SARS-CoV-2 and is therefore regarded as a key drug target for treating the disease. To identify 3CLpro inhibitors that can suppress SARS-CoV-2 replication, we performed a virtual screening of 500,282 compounds in a Korean compound bank. We then subjected the top computational hits to inhibitory assays against 3CLpro in vitro, leading to the identification of a class of non-covalent inhibitors. Among these inhibitors, compound 7 showed an EC50 of 39.89 µM against SARS-CoV-2 and CC50 of 453.5 µM. This study provides candidates for the optimization of potent 3CLpro inhibitors showing antiviral effects against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/metabolismo , Chlorocebus aethiops , Proteases 3C de Coronavírus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , Ligação Proteica , República da Coreia , Bibliotecas de Moléculas Pequenas/metabolismo , Células Vero
4.
J Enzyme Inhib Med Chem ; 36(1): 437-449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33467931

RESUMO

The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.


Assuntos
Inibidores da Colinesterase/farmacologia , Compostos de Piridínio/farmacologia , Compostos de Quinolínio/farmacologia , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Compostos de Quinolínio/síntese química , Compostos de Quinolínio/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 28(23-24): 3784-3786, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30301674

RESUMO

First-line medical treatment against nerve agents consists of co-administration of anticholinergic agents and oxime reactivators, which reactivate inhibited AChE. Pralidoxime, a commonly used oxime reactivator, is effective against some nerve agents but not against others; thus, new oxime reactivators are needed. Novel tacrine-pyridinium hybrid reactivators in which 4-pyridinealdoxime derivatives are connected to tacrine moieties by linear carbon chains of different lengths (C2-C7) were prepared (Scheme 1, 5a-f). Their binding affinities to electric eel AChE were tested because oximes can inhibit free AChE, and the highest AChE activity (95%, 92%, and 90%) was observed at 1 µM concentrations of the oximes (5a, 5b, and 5c, respectively). Based on their inhibitory affinities towards free AChE, 1 µM concentrations of the oxime derivatives (5) were used to examine reactivation of paraoxon-inhibited AChE. Reactivation ability increased as the carbon linker chains lengthened (n = 2-5), and 5c and 5d showed remarkable reactivation ability (41%) compared to that of 2-PAM (16%) and HI-6 (4%) against paraoxon-inhibited electric eel AChE at 1 µM concentrations. Molecular docking simulation showed that the most stable binding free energy was observed in 5c at 73.79 kcal⋅mol-1, and the binding mode of 5c is acceptable for the oxygen atom of oximate to attack the phosphorus atom of paraoxon and reactivate paraoxon-inhibited eel AChE model structure.


Assuntos
Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Tacrina/química , Tacrina/farmacologia , Animais , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/síntese química , Electrophorus , Simulação de Acoplamento Molecular , Paraoxon/farmacologia , Compostos de Piridínio/síntese química , Tacrina/síntese química
6.
Bioorg Med Chem Lett ; 27(15): 3582-3585, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587824

RESUMO

Members of a series of 4-aryl-6,7,8,9-tetrahydrobenzo[4,5]thieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(4H)-ones (1, Fig. 2) were prepared and tested against representative enteroviruses including Human Coxsackievirus B1 (Cox B1), Human Coxsackievirus B3 (Cox B3), human Poliovirus 3 (PV3), human Rhinovirus 14 (HRV14), human Rhinovirus 21 (HRV 21) and human Rhinovirus 71 (HRV 71). The C-8-tert-butyl group on the tetrahydrobenzene ring in these substances was found to be crucial for their enterovirus activity. One member of this group, 1e, showed single digit micromolar activities (1.6-8.85µM) against a spectrum of viruses screened, and the highest selectivity index (SI) values for Cox B1 (>11.2), for Cox B3 (>11.5), and for PV3 (>51.2), respectively. In contrast, 1p, was the most active analog against the selected HRVs (1.8-2.6µM), and showed the highest selectivity indices among the group of compounds tested. The SI values for 1p were 11.5 for HRV14, 8.4 for HRV21, and 12.1 for HRV71, respectively.


Assuntos
Antivirais/química , Antivirais/farmacologia , Enterovirus/efeitos dos fármacos , Pirimidinonas/química , Pirimidinonas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Antivirais/metabolismo , Enterovirus/fisiologia , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Microssomos/metabolismo , Pirimidinonas/metabolismo , Ratos , Triazóis/metabolismo , Replicação Viral/efeitos dos fármacos
7.
J Nanosci Nanotechnol ; 14(10): 7693-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942850

RESUMO

A biphenyl derivative containing two D-Ala-D-Ala moieties was found to form fluorescent nano/microfibers when subjected to self-assembly conditions in aqueous EtOH. Incubation of the nano/microfibers with vancomycin results in the disappearance of the fibers along with a significant decrease in the fluorescence intensity. The detection limit of vancomycin determined by the fluorescence quenching strategy was calculated to be ca. 57 µM. Regeneration of the original fiber structures were obtained in the presence of Ac-Lys(Ac)-D-Ala-D-Ala, a substance known to bind tightly to vancomycin. Other proteins including bovine serum albumin (BSA), casein, elastase, and chymotrypsin were found to cause no morphological and fluorescence changes in the supramolecules. The unique vancomycin-induced phase transition and fluorescence change were not observed with a biphenyl derivative having L-Ala-L-Ala moiety.


Assuntos
Antibacterianos/química , Dipeptídeos/química , Vancomicina/química , Modelos Moleculares , Conformação Molecular , Espectrometria de Fluorescência , Estereoisomerismo
8.
J Appl Toxicol ; 34(2): 191-204, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23297007

RESUMO

Cisplatin [cis-diammine-dichloroplatinum (II)] is a widely used chemotherapeutic agent, and one of its most severe side effects is ototoxicity. In the course of developing a new protective agent against cisplatin-induced ototoxicity, we have been interested in a novel synthetic compound, 3-Amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR-22335). We evaluated the effectiveness of KR-22335 as an otoprotective agent against cisplatin-induced toxicity. The otoprotective effect of KR-22335 against cisplatin was tested in vitro in cochlear organs of Corti-derived cell lines, HEI-OC1, and in vivo in a zebrafish (Danio rerio) model. Cisplatin-induced apoptosis, cell cycle arrest and an increase in intracellular reactive oxygen species (ROS) generation were demonstrated in HEI-OC1 cells. KR-22335 inhibited cisplatin-induced apoptosis and mitochondrial injury in HEI-OC1 cells. KR-22335 inhibited cisplatin-induced activation of JNK, p-38, caspase-3 and PARP in HEI-OC1 cells. Scanning and transmission electron micrographs showed that KR-22335 prevented cisplatin-induced destruction of kinocilium and stereocilia in zebrafish neuromasts. Tissue TUNEL of neuromasts in zebrafish demonstrated that KR-22335 blocked cisplatin-induced TUNEL positive hair cells in neuromasts. The results of this study suggest that KR-22335 may prevent ototoxicity caused by the administration of cisplatin through the inhibition of mitochondrial dysfunction and suppression of ROS generation. KR-22335 may be considered as a potential candidate for protective agents against cisplatin-induced ototoxicity.


Assuntos
Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Cisplatino/efeitos adversos , Células Ciliadas Auditivas/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Quinolonas/farmacologia , Animais , Linhagem Celular Tumoral , Células Ciliadas Auditivas/citologia , Humanos , Marcação In Situ das Extremidades Cortadas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
10.
RSC Med Chem ; 15(2): 704-719, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389877

RESUMO

Human rhinoviruses (hRVs) cause upper and lower respiratory tract infections and exacerbate asthma and chronic obstructive pulmonary disease. hRVs comprise more than 160 strains with considerable genetic variation. Their high diversity and strain-specific interactions with antisera hinder the development of anti-hRV therapeutic agents. Phosphatidylinositol-4-kinase IIIß (PI4KIIIß) is a key enzyme in the phosphoinositide signalling pathway that is crucial for the replication and survival of various viruses. We identified novel PI4KIIIß inhibitors, N-(4-methyl-5-arylthiazol)-2-amide derivatives, by generating a hit compound, 1a, from the high-throughput screening of a chemical library, followed by the optimization study of 1a. Inhibitor 7e exhibited the highest activity (EC50 = 0.008, 0.0068, and 0.0076 µM for hRV-B14, hRV-A16, and hRV-A21, respectively) and high toxicity (CC50 = 6.1 µM). Inhibitor 7f showed good activity and low toxicity and provided the highest selectivity index (SI ≥ 4638, >3116, and >2793 for hRV-B14, hRV-A16, and hRV-A21, respectively). Furthermore, 7f showed broad-spectrum activities against various hRVs, coxsackieviruses, and other enteroviruses, such as EV-A71 and EV-D68. The binding mode of the inhibitors was investigated using 7f, and the experimental results of plaque reduction, replicon and cytotoxicity, and time-of-drug-addition assays suggested that 7f acts as a PI4KIIIß inhibitor. The kinase inhibition activity of this series of compounds against PI4KIIIα and PI4KIIIß was assessed, and 7f demonstrated kinase inhibition activity with an IC50 value of 0.016 µM for PI4KIIIß, but not for PI4KIIIα (>10 µM). Therefore, 7f represents a highly potent and selective PI4KIIIß inhibitor for the further development of antiviral therapy against hRVs or other enteroviruses.

11.
Eur J Med Chem ; 276: 116690, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39032404

RESUMO

Small molecules that exhibit broad-spectrum enteroviral inhibitory activity by targeting viral replication proteins are highly desired in antiviral drug discovery studies. To discover new human rhinovirus (hRV) inhibitors, we performed a high-throughput screening of 100,000 compounds from the Korea Chemical Bank library. This search led to identification of two phosphatidylinositol-4-kinase IIIß (PI4KIIIß) inhibitors having the pyrazolo-pyrimidine core structure, which display moderate anti-rhinoviral activity along with mild cytotoxicity. The results of a study aimed at optimizing the activity of the hit compounds showed that the pyrazolo-pyrimidine derivative 6f exhibits the highest activity (EC50 = 0.044, 0.066, and 0.083 µM for hRV-B14, hRV-A16, and hRV-A21, respectively) and moderate toxicity (CC50 = 31.38 µM). Furthermore, 6f has broad-spectrum activities against various hRVs, coxsackieviruses and other enteroviruses, such as EV-A71, EV-D68. An assessment of kinase inhibition potencies demonstrated that 6f possesses a high and selective kinase inhibition activity against PI4KIIIß (IC50 value of 0.057 µM) and not against PI4KIIIα (>10 µM). Moreover, 6f exhibits modest hepatic stability (46.9 and 55.3 % remaining after 30 min in mouse and human liver microsomes, respectively). Finally, an in vivo study demonstrated that 6f possesses a desirable pharmacokinetic profile reflected in low systemic clearance (0.48 L∙h-1 kg-1) and modest oral bioavailability (52.4 %). Hence, 6f (KR-26549) appears to be an ideal lead for the development of new antiviral drugs.


Assuntos
Antivirais , Pirimidinas , Rhinovirus , Replicação Viral , Humanos , Rhinovirus/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Replicação Viral/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Animais , Relação Estrutura-Atividade , Estrutura Molecular , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Camundongos , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Testes de Sensibilidade Microbiana , Fosfotransferases (Aceptor do Grupo Álcool)
12.
Langmuir ; 29(19): 5869-77, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23597134

RESUMO

Novel, stimulus-responsive supramolecular structures in the form of fibers, gels, and spheres, derived from an azobenzene-containing benzenetricarboxamide derivative, are described. Self-assembly of tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxamide (Azo-1) in aqueous organic solvent systems results in solvent dependent generation of microfibers (aq DMSO), gels (aq DMF), and hollow spheres (aq THF). The results of a single crystal X-ray diffraction analysis of Azo-1 (crystallized from a mixture of DMSO and H2O) reveal that it possesses supramolecular columnar packing along the b axis. Data obtained from FTIR analysis and density functional theory (DFT) calculation suggest that multiple hydrogen bonding modes exist in the Azo-1 fibers. UV irradiation of the microfibers, formed in aq DMSO, causes complete melting while regeneration of new fibers occurs upon visible light irradiation. In addition to this photoinduced and reversible phase transition, the Azo-1 supramolecules display a reversible, fiber-to-sphere morphological transition upon exposure to pure DMSO or aq THF. The role played by amide hydrogen bonds in the morphological changes occurring in Azo-1 is demonstrated by the behavior of the analogous, ester-containing tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxylate (Azo-2) and by the hydrogen abstraction in the presence of fluoride anions.


Assuntos
Compostos Azo/química , Benzamidas/química , Cristalografia por Raios X , Géis/química , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
13.
Langmuir ; 27(5): 1560-4, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21192667

RESUMO

A new class of nonpolymeric thermosensitive materials based on the benzene-1,3,5-tricarboxamide (BTC) structural platform are described. We observed that the benzocrown ether-substituted BTC derivatives undergo an unusual temperature-dependent reversible solubility change in aqueous solution. Thus, a clear nonfluorescent solution of BTC derivatives becomes turbid and generates fluorescent aggregates above the LCST temperature. The aggregates disappear, and a clear solution is reformed when the solution is cooled to 20 °C. It is believed that the LCST behavior of BTC derivatives results from the removal of water molecules from crown ether moieties at elevated temperature. Thus, BTC derivatives exist in fully hydrated forms below the LCST. Heating the BTC derivatives solutions causes the expulsion of water and induces the formation of aggregates. At room temperature, the removal of water from BTC derivatives occurs slowly and leads to the formation of long nanofibers.


Assuntos
Benzeno/química , Temperatura , Nanoestruturas/química , Solubilidade , Água/química
14.
Bioorg Med Chem Lett ; 21(1): 150-4, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21144749

RESUMO

Carbamate inhibitors (e.g., pyridostimine bromide) are used as a pre-exposure treatment for the prevention of organophosphorus poisoning. They work by blocking acetylcholinesterase's (AChE) native function and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for many undesirable side-effects related to the carbamylation of AChE. In this Letter, 19 analogues of SAD-128 were prepared and evaluated as cholinesterase inhibitors. The screening results showed promising inhibitory ability of four compounds better to used standards (pralidoxime, obidoxime, BW284c51, ethopropazine, SAD-128). Four most promising compounds were selected for further molecular docking studies. The SAR was stated from obtained data. The former receptor studies were reported and discussed. The further in vivo studies were recommended in the view of OP pre-exposure treatment.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/síntese química , Compostos de Piridínio/química , Acetilcolinesterase/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Simulação por Computador , Modelos Moleculares , Organofosfatos/química , Compostos de Piridínio/síntese química , Compostos de Piridínio/farmacologia , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 21(21): 6563-6, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21920739

RESUMO

Cholinesterase inhibitors are, so far, the only successful strategy for the symptomatic treatment of Alzheimer's disease. Tacrine (THA) is a potent acetylcholinesterase inhibitor that was used in the treatment of Alzheimer's disease for a long time. However, the clinical use of THA was hampered by its low therapeutic index, short half-life and liver toxicity. 7-Methoxytacrine (7-MEOTA) is equally pharmacological active compound with lower toxicity compared to THA. In this Letter, the synthesis, biological activity and molecular modelling of elimination by-product isolated during synthesis of 7-MEOTA based bis-alkylene linked compound is described.


Assuntos
Acridinas/síntese química , Acridinas/farmacologia , Colinérgicos/síntese química , Colinérgicos/farmacologia , Tacrina/síntese química , Tacrina/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Técnicas In Vitro , Modelos Moleculares
16.
J Enzyme Inhib Med Chem ; 26(1): 93-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20569082

RESUMO

These experiments were performed on a rat model. The rats were divided into eight groups and consequently exposed to either a saline solution (control), atropine or a combination of atropine and tabun. The reactivation efficacy of the oximes was estimated on the rats exposed to tabun, atropine and a reactivator of AChE. The oximes HI-6, obidoxime, trimedoxime, K203 and KR-22836 were used as representative compounds of commonly available and new AChE reactivators. Besides the positive effect of the administered reactivators on blood AChE activity, the sizable modulation of low molecular weight antioxidant (LMWA) levels was also determined. The LMWA levels in the the animals treated with the oxime reactivators were decreased in comparison with the animals treated by atropine alone. It was found that the levels of LMWA returned to the level found in the control animals when either trimedoxime, K203 or KR-22836 were administered. The principle of oxime reactivator function and a novel insight into AChE activity regulation and oxidative stress is discussed.


Assuntos
Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Organofosfatos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Oximas/farmacologia , Acetilcolinesterase/sangue , Animais , Antídotos/síntese química , Antioxidantes/análise , Atropina/farmacologia , Reativadores da Colinesterase/síntese química , Masculino , Peso Molecular , Oximas/síntese química , Ratos , Ratos Wistar
17.
Toxicol Mech Methods ; 21(3): 241-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21142778

RESUMO

The potency of bispyridinium acetylcholinesterase reactivator KR-22934 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with the oxime K203 and commonly used oximes. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of KR-22934 was slightly higher than the reactivating efficacy of K203 and roughly corresponded to the reactivating efficacy of obidoxime and trimedoxime in blood and diaphragm. On the other hand, the oxime KR-22934 was not able to reactivate tabun-inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied approximately corresponded to their reactivating efficacy. Based on the results, one can conclude that the oxime KR-22934 is not suitable for the replacement of commonly used oximes for the antidotal treatment of tabun poisoning in spite of its potency to reactivate tabun-inhibited acetylcholinesterase in the peripheral compartment (blood, diaphragm).


Assuntos
Acetilcolinesterase/metabolismo , Antídotos/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Oximas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Animais , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Masculino , Camundongos , Cloreto de Obidoxima/farmacologia , Cloreto de Obidoxima/uso terapêutico , Organofosfatos/toxicidade , Oximas/farmacologia , Intoxicação/tratamento farmacológico , Compostos de Piridínio/farmacologia , Ratos , Ratos Wistar , Trimedoxima/farmacologia , Trimedoxima/uso terapêutico
18.
Biomolecules ; 11(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513955

RESUMO

Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Animais , Domínio Catalítico , Análise por Conglomerados , Ativação Enzimática , Humanos , Ligantes , Camundongos , Modelos Moleculares , Organofosfatos/química , Oximas/química , Fósforo/química , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Teoria Quântica , Sarina/química
19.
Bioorg Med Chem Lett ; 20(5): 1763-6, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20138518

RESUMO

Reversible inhibitors (e.g., pyridostigmine bromide, neostigmine bromide) of carbamate origin are used in the early treatment of Myasthenia gravis (MG) to block acetylcholinesterase (AChE) native function and conserve efficient amount of acetylcholine for decreasing number of nicotinic receptors. Carbamate inhibitors are known for many undesirable side effects related to the reversible inhibition of AChE. In contrast, this paper describes 20 newly prepared bispyridinium inhibitors of potential concern for MG. Although some compounds from this series have been known before, they were not assayed for cholinesterase inhibition yet. The newly prepared compounds were evaluated in vitro on human erythrocyte AChE and human plasmatic butyrylcholinesterase (BChE). Their inhibitory ability was expressed as IC(50) and compared to standard carbamate drugs. Three compounds presented promising inhibition (in muM range) of both enzymes in vitro similar to the used standards. The novel inhibitors did not present selectivity between AChE and BChE. Two newly prepared compounds were chosen for docking studies and confirmed apparent pi-pi or pi-cationic interactions aside enzyme's catalytic sites. The kinetics assay confirmed non-competitive inhibition of AChE by two best newly prepared compounds.


Assuntos
Acetilcolinesterase/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Miastenia Gravis/tratamento farmacológico , Compostos de Piridínio/química , Acetilcolinesterase/metabolismo , Sítios de Ligação , Butirilcolinesterase/metabolismo , Carbamatos/química , Carbamatos/uso terapêutico , Domínio Catalítico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Simulação por Computador , Humanos , Cinética , Compostos de Piridínio/síntese química , Compostos de Piridínio/uso terapêutico , Relação Estrutura-Atividade
20.
J Enzyme Inhib Med Chem ; 25(4): 480-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20233085

RESUMO

The potency of newly developed bispyridinium compound K203 and its fluorinated analog KR-22836 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determining the percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of K203 is higher than the reactivating efficacy of its fluorinated analog KR-22836 as well as currently available oximes studied. The therapeutic efficacy of the oxime K203 and its fluorinated analog corresponds to their potency to reactivate tabun-inhibited acetylcholinesterase. According to the results, the oxime K203 is more suitable than KR-22836 for the replacement of commonly used oximes for the antidotal treatment of acute tabun poisoning due to its relatively high potency to counteract the acute toxicity of tabun.


Assuntos
Antídotos/farmacologia , Reativadores da Colinesterase/farmacologia , Organofosfatos/toxicidade , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Animais , Antídotos/uso terapêutico , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/uso terapêutico , Camundongos , Cloreto de Obidoxima/farmacologia , Cloreto de Obidoxima/uso terapêutico , Oximas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Ratos , Trimedoxima/farmacologia , Trimedoxima/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA