Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Drug Dev Ind Pharm ; 49(1): 103-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36852769

RESUMO

OBJECTIVE: The present work provides characterization of rheological properties of a new bentonite-based thixotropic gel emulsion nasal spray (AM-301), its nasal residence time, distribution, safety and tolerability. SIGNIFICANCE: The nasal epithelium is a portal of entry for allergens and primary infection by airborne pathogens. Non-pharmacological interventions, which enhance physical and biological barriers, protect against allergens and pathogens without drug-related side effects. AM-301 has shown promising efficacy and safety in the nasal epithelium against viruses (in vitro) and pollen (clinical). METHODS: Technical part (i) spray characterization was performed with a validated droplet size distribution method; evaluation of the rheological properties of the formulation was performed by a validated amplitude sweep method and a validated oscillation, rotation, oscillation; Clinical part (ii) nasal and oropharyngeal endoscopy were used to provide a semi-quantitative evaluation of distribution and residence time of fluorescein-labelled AM-301 in the nose and oropharynx of healthy volunteers; (iii) tolerability and safety. RESULTS: (i) The non-Newtonian rheological properties of the formulation allow AM-301 to be sprayed and then to revert to a gel to prevent run-off from the nasal cavity; (ii) the formulation remains on the inferior turbinate, septum and oropharynx of volunteers for up to 210 min and on the middle turbinate for up to 60 min; two nasal sprays provide no substantial benefit over a single application with regards to coverage or retention; (iii) the spray is well tolerated. CONCLUSIONS: Single dose spray delivery of AM-301 provides extended coverage of the nasal mucosa up to the inferior turbinates.


Assuntos
Bentonita , Sprays Nasais , Humanos , Administração Intranasal , Bentonita/farmacologia , Emulsões/farmacologia , Mucosa Nasal
2.
AAPS PharmSciTech ; 20(2): 89, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30680544

RESUMO

The Skin Parallel Artificial Membrane Permeability Assay (PAMPA) is a 96-well plate-based skin model with an artificial membrane containing free fatty acid, cholesterol, and synthetic ceramide analogs to mimic the stratum corneum (SC) barrier. The current study evaluates the compatibility of lipophilic solvents/penetration enhancer, topical emulsions containing different emulsifier systems, and organic acceptor media additives with the artificial membrane of the assay. Additionally, different assay setups (standard setup: donor in bottom plate versus modified setup: donor in top plate) were compared. Methylparaben (MP), ethylparaben (EP), and propylparaben (PP) were used as model permeants and internal standards for proper assay execution. The permeation order of the parabens (MP > EP > PP) remained the same with different lipophilic solvents, and the ranking of lipophilic solvents was comparable under standard and modified conditions (isopropyl myristate, IPM > dimethyl isosorbide, DMI ≥ propylene glycol, PG > diisopropyl adipate, DIPA). Pre-incubation of the Skin PAMPA plates with IPM, DIPA, and DMI, as well as with formulations that contain non-ionic emulsifiers, and acceptor solutions containing DMSO or EtOH (≤ 50%) for 4 h did not increase the percentage of permeated parabens in the main experiment, suggesting that those compounds do not make the artificial membrane more permeable. High-resolution mass spectrometry confirmed that acceptor solutions with ≤ 50% DMSO or EtOH do not extract stearic acid, cholesterol, and certramides at standard assay conditions. Hence, if certain constraints are considered, the Skin PAMPA model can be used as a pre-screening tool for topical formulation selection.


Assuntos
Membranas Artificiais , Pele/metabolismo , Administração Tópica , Composição de Medicamentos , Emulsões/química , Humanos , Miristatos/química , Parabenos/farmacocinética , Permeabilidade , Propilenoglicol/química
3.
Biomacromolecules ; 15(3): 756-62, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24460101

RESUMO

Heterogeneous toroidal-spiral particles (TSPs) were generated by polymer droplet sedimentation, interaction, and cross-linking. TSPs provide a platform for encapsulation and release of multiple compounds of different sizes and physicochemical properties. As a model system, we demonstrate the encapsulation and independently controlled release of an anti-VEGFR-2 antibody and irinotecan for the treatment of glioblastoma multiforme. The anti-VEGFR-2 antibody was released from the TS channels and its binding to HUVECs was confirmed by confocal microscopy and flow cytometry, suggesting active antibody encapsulation and release. Irinotecan, a small molecule drug, was released from the dense polymer matrix of poly(ethylene glycol) diacrylate (MW ~ 700 g/mol; PEGDA 700). Released irinotecan inhibited the proliferation of U251 malignant glioma cells. Since the therapeutic compounds are released through different pathways, specifically diffusion through the polymer matrix versus TS channels, the release rate can be controlled independently through the design of the structure and material of particle components.


Assuntos
Anticorpos Anti-Idiotípicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Anticorpos Anti-Idiotípicos/química , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Irinotecano , Tamanho da Partícula , Polímeros/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/administração & dosagem
4.
AAPS PharmSciTech ; 14(4): 1333-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23990120

RESUMO

Pharmaceutical excipients contain reactive groups and impurities due to manufacturing processes that can cause decomposition of active drug compounds. The aim of this investigation was to determine if commercially available oral disintegrating tablet (ODT) platforms induce active pharmaceutical ingredient (API) degradation. Benzocaine was selected as the model API due to known degradation through ester and primary amino groups. Benzocaine was either compressed at a constant pressure, 20 kN, or at pressure necessary to produce a set hardness, i.e., where a series of tablets were produced at different compression forces until an average hardness of approximately 100 N was achieved. Tablets were then stored for 6 months under International Conference on Harmonization recommended conditions, 25°C and 60% relative humidity (RH), or under accelerated conditions, 40°C and 75% RH. Benzocaine degradation was monitored by liquid chromatography-mass spectrometry. Regardless of the ODT platform, no degradation of benzocaine was observed in tablets that were kept for 6 months at 25°C and 60% RH. After storage for 30 days under accelerated conditions, benzocaine degradation was observed in a single platform. Qualitative differences in ODT platform behavior were observed in physical appearance of the tablets after storage under different temperature and humidity conditions.


Assuntos
Anestésicos Locais/análise , Benzocaína/análise , Anestésicos Locais/administração & dosagem , Benzocaína/administração & dosagem , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes , Solubilidade , Espectrofotometria Ultravioleta , Comprimidos
5.
Pharmaceutics ; 15(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37514009

RESUMO

Specific aspects of semi-solid dosage forms for topical application include the nature of the barrier to be overcome, aspects of susceptibility to physical and chemical instability, and a greater influence of sensory perception. Advances in understanding the driving forces of skin penetration as well as the design principles and inner structure of formulations, provide a good basis for the more rational design of such dosage forms, which still often follow more traditional design approaches. This review analyses the opportunities and constraints of rational formulation design approaches in the industrial development of new topical drugs. As the selection of drug candidates with favorable physicochemical properties increases the speed and probability of success, models for drug selection based on theoretical and experimental approaches are discussed. This paper reviews how progress in the scientific understanding of mechanisms and vehicle-influence of skin penetration can be used for rational formulation design. The characterization of semi-solid formulations is discussed with a special focus on modern rheological approaches and analytical methods for investigating and optimizing the chemical stability of active ingredients in consideration of applicable guidelines. In conclusion, the combination of a good understanding of scientific principles combined with early consideration of regulatory requirements for product quality are enablers for the successful development of innovative and robust semi-solid formulations for topical application.

6.
BMC Biotechnol ; 12: 63, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22989306

RESUMO

BACKGROUND: Many branches of biomedical research find use for pure recombinant proteins for direct application or to study other molecules and pathways. Glutathione affinity purification is commonly used to isolate and purify glutathione S-transferase (GST)-tagged fusion proteins from total cellular proteins in lysates. Although GST affinity materials are commercially available as glutathione immobilized on beaded agarose resins, few simple options for in-house production of those systems exist. Herein, we describe a novel method for the purification of GST-tagged recombinant proteins. RESULTS: Glutathione was conjugated to low molecular weight poly(ethylene glycol) diacrylate (PEGDA) via thiol-ene "click" chemistry. With our in-house prepared PEGDA:glutathione (PEGDA:GSH) homogenates, we were able to purify a glutathione S-transferase (GST) green fluorescent protein (GFP) fusion protein (GST-GFP) from the soluble fraction of E. coli lysate. Further, microspheres were formed from the PEGDA:GSH hydrogels and improved protein binding to a level comparable to purchased GSH-agarose beads. CONCLUSIONS: GSH containing polymers might find use as in-house methods of protein purification. They exhibited similar ability to purify GST tagged proteins as purchased GSH agarose beads.


Assuntos
Cromatografia de Afinidade/métodos , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/isolamento & purificação , Cromatografia de Afinidade/instrumentação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glutationa/química , Glutationa Transferase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrogéis/química , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
7.
Biomacromolecules ; 13(4): 963-73, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22404228

RESUMO

Hydrophilic poly(ethylene glycol) diacrylate (PEGDA) hydrogel surfaces resist protein adsorption and are generally thought to be unsuitable for anchorage-dependent cells to adhere. Intriguingly, our previous findings revealed that PEGDA superporous hydrogel scaffolds (SPHs) allow anchorage of bone marrow derived human mesenchymal stem cells (hMSCs) and support their long-term survival. Therefore, we hypothesized that the physicochemical characteristics of the scaffold impart properties that could foster cellular responses. We examined if hMSCs alter their microenvironment to allow cell attachment by synthesizing their own extracellular matrix (ECM) proteins. Immunofluorescence staining revealed extensive expression of collagen type I, collagen type IV, laminin, and fibronectin within hMSC-seeded SPHs by the end of the third week. Whether cultured in serum-free or serum-supplemented medium, hMSC ECM protein gene expression patterns exhibited no substantial changes. The presence of serum proteins is required for initial anchorage of hMSCs within the SPHs but not for the hMSC survival after 24 h. In contrast to 2D expansion on tissue culture plastic (TCP), hMSCs cultured within SPHs proliferate similarly in the presence or absence of serum. To test whether hMSCs retain their undifferentiated state within the SPHs, cell-seeded constructs were cultured for 3 weeks in stem cell maintenance medium and the expression of hMSC-specific cell surface markers were evaluated by flow cytometry. CD105, CD90, CD73, and CD44 were present to a similar extent in the SPH and in 2D monolayer culture. We further demonstrated multilineage potential of hMSCs grown in the PEGDA SPHs, whereby differentiation into osteoblasts, chondrocytes, and adipocytes could be induced. The present study demonstrates the potential of hMSCs to alter the "blank" PEGDA environment to a milieu conducive to cell growth and multilineage differentiation by secreting adhesive ECM proteins within the porous network of the SPH scaffolds.


Assuntos
Diferenciação Celular , Linhagem da Célula , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Hidrogéis/metabolismo , Células-Tronco Mesenquimais/metabolismo , Polietilenoglicóis/química , Adsorção , Sobrevivência Celular , Citometria de Fluxo , Humanos , Hidrogéis/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
9.
Tissue Eng Part B Rev ; 22(1): 34-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26414084

RESUMO

Human trials have demonstrated the feasibility of alginate-encapsulated islet cells for the treatment of type 1 diabetes. Encapsulated islets can be protected from the host's immune system and remain viable and functional following transplantation. However, the long-term success of these therapies requires that alginate microcapsules maintain their immunoprotective capacity and stability in vivo for sustained periods. In part, as a consequence of different encapsulation strategies, islet encapsulation studies have produced inconsistent results in regard to graft functioning time, stability, and overall metabolic benefits. Alginate composition (proportion of M- and G-blocks), alginate purity, the cross-linking ions (calcium or barium), and the presence or absence of additional polymer coating layers influence the success of cell encapsulation. This review summarizes the outcomes of long-term studies of alginate-encapsulated islet transplants in animals and humans and provides a critical discussion of the graft failure mechanisms, including issues with graft biocompatibility, transplantation site, and integrity of the encapsulated islet grafts. Strategies to improve the mechanical stability of alginate capsules and methods for monitoring graft survival and function in vivo are presented.

10.
Peptides ; 58: 83-90, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24969623

RESUMO

MicroRNAs (miRNAs) are a class of gene regulators originating from non-coding endogenous RNAs. Altered expression, both up- and down-regulation, of miRNAs plays important roles in many human diseases. Correcting miRNA dysregulation by either inhibiting or restoring miRNA function may provide therapeutic benefit. However, efficient, nontoxic miRNA delivery systems are in need. Cell penetrating peptides (CPPs) have been widely exploited for protein, DNA, and RNA delivery. Few have examined CPP transfection efficiency with single stranded anti-miRNA. The R8 peptide condensed both siRNA and anti-miRNA. Greater than 50% of cells had anti-miRNA/R8 complexes associated and in these cells 68% of anti-miRNA escapes the endosome/lysosome. Single-stranded antisense miR-21 inhibitor (anti-miR-21) administered using the R8 peptide elicited efficient downstream gene upregulation. Glioblastoma cell migration was inhibited by 25% compared to the negative control group. To our knowledge, this is the first demonstration of miRNA modulation with anti-miR-21/R8 complexes, which has laid the groundwork for further exploring octaarginine as intracellular anti-miRNAs carrier.


Assuntos
Movimento Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Glioblastoma/metabolismo , MicroRNAs/antagonistas & inibidores , RNA Antissenso/farmacologia , RNA Neoplásico/antagonistas & inibidores , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Glioblastoma/genética , Glioblastoma/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Antissenso/química , RNA Antissenso/genética , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transfecção/métodos
11.
J Dev Biol Tissue Eng ; 5(2): 18-25, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24013643

RESUMO

The stem cell differentiation paradigm is based on the progression of cells through generations of daughter cells that eventually become restricted and committed to one lineage resulting in fully differentiated cells. Herein, we report on the differentiation of adult human mesenchymal stem cells (hMSCs) towards adipogenic and osteogenic lineages using established protocols. Lineage specific geneswere evaluated by quantitative real-time PCR relative to two reference genes. The expression of osteoblast-associated genes (alkaline phosphatase, osteopontin, and osteocalcin)was detected in hMSCs that underwent adipogenesis. When normalized, the expression of adipocyte marker genes (adiponectin, fatty acid binding protein P4, and leptin) increasedin a time-dependent manner during adipogenic induction. Adiponectin and leptin were also detected in osteoblast-induced cells. Lipid vacuoles that represent the adipocyte phenotype were only present in the adipogenic induction group. Conforming to the heterogeneous nature of hMSCs and the known plasticity between osteogenic and adipogenic lineages, these data indicatea marker overlap between MSC-derived adipocytes and osteoblasts. Weproposea careful consideration of experimental conditions such as investigated timepoints, selected housekeeping genesand the evidence indicating lack of differentiation into other lineageswhen evaluating hMSC differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA