Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Struct ; 56(1): 13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647368

RESUMO

The mechanical properties of natural fibers, as used to produce sustainable biocomposites, vary significantly-both among different plant species and also within a single species. All plants, however, share a common microstructural fingerprint. They are built up by only a handful of constituents, most importantly cellulose. Through continuum micromechanics multiscale modeling, the mechanical behavior of cellulose nanofibrils is herein upscaled to the technical fiber level, considering 26 different commonly used plants. Model-predicted stiffness and elastic limit bounds, respectively, frame published experimental ones. This validates the model and corroborates that plant-specific physicochemical properties, such as microfibril angle and cellulose content, govern the mechanical fiber performance.

2.
Materials (Basel) ; 16(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37763531

RESUMO

This research resulted in the development of a method that can be used for filament-reinforced 3D printing of clay. Currently, clay-based elements are mixed with randomly dispersed fibrous materials in order to increase their tensile strength. The advantages of taking this new approach to create filament-reinforced prints are the increased bridging ability while printing, the increased tensile strength of the dried elements, and the achievement of non-catastrophic failure behavior. The research methodology used involves the following steps: (1) evaluating properties of various filament materials with respect to multiple criteria, (2) designing a filament guiding nozzle for co-extrusion, and (3) conducting a comprehensive testing phase for the composite material. This phase involves comparisons of bridging ability, tensile strength evaluations for un-reinforced clay prints and filament-reinforced prints, as well as the successful production of an architectural brick prototype. (4) Finally, the gathered results are subjected to thorough analysis. Compared to conventional 3D printing of clay, the developed method enables a substantial increase in bridging distance during printing by a factor of 460%. This capability facilitates the design of objects characterized by reduced solidity and the attainment of a more open, lightweight, and net-like structure. Further, results show that the average tensile strength of the reinforced sample in a dry state exhibited an enhancement of approximately 15%. The combination of clay's ability to resist compression and the filament's capacity to withstand tension has led to the development of a structural concept in this composite material akin to that of reinforced concrete. This suggests its potential application within the construction industry. Producing the prototype presented in this research would not have been possible with existing 3D printing methods of clay.

3.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614712

RESUMO

The growing use of blends of low- and high-calcium solid precursors in combination with different alkaline activators requires simple, efficient, and accurate experimental means to characterize their behavior, particularly during the liquid-to-solid transition (setting) at early material ages. This research investigates slag-fly ash systems mixed at different solution-to-binder (s/b) ratios with sodium silicate/sodium hydroxide-based activator solutions of varying concentrations. Therefore, continuous non-destructive tests-namely ultrasonic pulse velocity (UPV) measurements and isothermal calorimetry tests-are combined with classical slump flow, Vicat, and uniaxial compressive strength tests. The experimental results highlight that high alkali and silica contents and a low s/b ratio benefit the early-age hydration, lead to a faster setting, and improve the early-age strength. The loss of workability, determined from the time when the slump flow becomes negligible, correlates well with ultrasonic P-wave velocity evolutions. This is, however, not the case for Vicat or calorimetry tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA