Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825008

RESUMO

The nuclear envelope (NE) is a permeable barrier that maintains nuclear-cytoplasmic compartmentalization and ensures nuclear function; however, it ruptures in various situations such as mechanical stress and mitosis. Although the protein components for sealing a ruptured NE have been identified, the mechanism by which lipid components are involved in this process remains to be elucidated. Here, we found that an inner nuclear membrane (INM) protein Bqt4 directly interacts with phosphatidic acid (PA) and serves as a platform for NE maintenance in the fission yeast Schizosaccharomyces pombe. The intrinsically disordered region (IDR) of Bqt4, proximal to the transmembrane domain, binds to PA and forms a solid aggregate in vitro. Excessive accumulation of Bqt4 IDR in INM results in membrane overproliferation and lipid droplet formation in the nucleus, leading to centromere dissociation from the NE and chromosome missegregation. Our findings suggest that Bqt4 IDR controls nuclear membrane homeostasis by recruiting PA to the INM, thereby maintaining the structural integrity of the NE.


Assuntos
Membrana Nuclear , Ácidos Fosfatídicos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Membrana Nuclear/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/química , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas de Ligação a DNA , Proteínas Nucleares
2.
J Am Chem Soc ; 146(32): 22193-22207, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38963258

RESUMO

Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.


Assuntos
Vesículas Extracelulares , Galectinas , Proteínas de Membrana , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicosilação , Galectinas/metabolismo , Galectinas/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Humanos , Difusão , Membrana Celular/metabolismo , Membrana Celular/química
3.
Curr Issues Mol Biol ; 46(1): 909-922, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275672

RESUMO

Chisocheton plants from the family Meliaceae have traditionally been used to treat several diseases; however, scientific evidence is limited. The most abundant chemical constituents of this plant are the limonoids, which are known for their various biological activities, including anti-inflammatory effects. However, the anti-inflammatory effects and underlying mechanisms of action of the constituents of Chisocheton plants have not been fully explored. In this report, we evaluated the anti-inflammatory activity of 17 limonoid compounds from Chisocheton plant primarily by measuring their inhibitory effects on the production of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, and MCP-1, in LPS-stimulated THP-1 cells using an ELISA assay. Compounds 3, 5, 9, and 14-17 exhibited significant activity in inhibiting the evaluated pro-inflammatory markers, with IC50 values less than 20 µM and a high selectivity index (SI) range. Compounds 3, 5, 9, and 15 significantly suppressed the expression of phosphorylated p38 MAPK in THP-1 cells stimulated with LPS. These findings support the use of limonoids from Chisocheton plants as promising candidates for anti-inflammatory therapy.

4.
EMBO J ; 39(12): e101732, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32378734

RESUMO

Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression.


Assuntos
Gangliosídeo G(M3)/metabolismo , Monócitos/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/genética , Células HEK293 , Humanos , Camundongos , Camundongos Mutantes , Monócitos/química , Obesidade/genética , Multimerização Proteica , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética
5.
Angew Chem Int Ed Engl ; 63(24): e202402922, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581637

RESUMO

Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, activates innate immunity. Its active principle is the terminal glycolipid lipid A. Acetobacter pasteurianus is a Gram-negative bacterium used in the fermentation of traditional Japanese black rice vinegar (kurozu). In this study, we focused on A. pasteurianus lipid A, which is a potential immunostimulatory component of kurozu. The active principle structure of A. pasteurianus lipid A has not yet been identified. Herein, we first systematically synthesized three types of A. pasteurianus lipid As containing a common and unique tetrasaccharide backbone. We developed an efficient method for constructing the 2-trehalosamine skeleton utilizing borinic acid-catalyzed glycosylation to afford 1,1'-α,α-glycoside in high yield and stereoselectivity. A common tetrasaccharide intermediate with an orthogonal protecting group pattern was constructed via [2+2] glycosylation. After introducing various fatty acids, all protecting groups were removed to achieve the first chemical synthesis of three distinct types of A. pasteurianus lipid As. After evaluating their immunological function using both human and murine cell lines, we identified the active principles of A. pasteurianus LPS. We also found the unique anomeric structure of A. pasteurianus lipid A contributes to its high chemical stability.


Assuntos
Acetobacter , Lipídeo A , Lipídeo A/química , Lipídeo A/imunologia , Lipídeo A/síntese química , Humanos , Camundongos , Acetobacter/química , Animais , Oligossacarídeos/química , Oligossacarídeos/síntese química , Glicosilação
6.
J Am Chem Soc ; 145(29): 15838-15847, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37344812

RESUMO

We report a promising cancer vaccine candidate comprising antigen/adjuvant-displaying enveloped viral replica as a novel vaccine platform. The artificial viral capsid, which consists of a self-assembled ß-annulus peptide conjugated with an HER2-derived antigenic CH401 peptide, was enveloped within a lipid bilayer containing the lipidic adjuvant α-GalCer. The use of an artificial viral capsid as a scaffold enabled precise control of its size to ∼100 nm, which is generally considered to be optimal for delivery to lymph nodes. The encapsulation of the anionically charged capsid by a cationic lipid bilayer dramatically improved its stability and converted its surface charge to cationic, enhancing its uptake by dendritic cells. The developed CH401/α-GalCer-displaying enveloped viral replica exhibited remarkable antibody-production activity. This study represents a pioneering example of precise vaccine design through bottom-up construction and opens new avenues for the development of effective vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Bicamadas Lipídicas , Antígenos , Adjuvantes Imunológicos , Peptídeos
7.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298546

RESUMO

Targeted alpha therapy (TAT) has garnered significant interest as an innovative cancer therapy. Owing to their high energy and short range, achieving selective α-particle accumulation in target tumor cells is crucial for obtaining high potency without adverse effects. To meet this demand, we fabricated an innovative radiolabeled antibody, specifically designed to selectively deliver 211At (α-particle emitter) to the nuclei of cancer cells. The developed 211At-labeled antibody exhibited a superior effect compared to its conventional counterparts. This study paves the way for organelle-selective drug delivery.


Assuntos
Neoplasias , Radioisótopos , Humanos , Radioisótopos/uso terapêutico , Sistemas de Liberação de Medicamentos , Núcleo Celular , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
8.
Angew Chem Int Ed Engl ; 62(30): e202304779, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37083035

RESUMO

Antibody dynamics on membranes, such as endocytosis and clustering, are vital in determining antibody functions. In this study, we demonstrated that glycan conjugation can modulate antibody dynamics through the glycan-lectin interaction to regulate its potency. The anti-HER2 antibody, an anti-breast-cancer antibody, was conjugated with galactose-containing N-glycan, and its internalization was suppressed by interaction with galectin-3, leading to enhanced complement-dependent cytotoxic (CDC) activity. This glycan-antibody conjugate is proposed as a new approach to modulate antibody activity and may provide an alternative strategy for redeveloping antibody drugs that do not exhibit sufficient activity.


Assuntos
Antineoplásicos , Imunoconjugados , Lectinas , Polissacarídeos
9.
Angew Chem Int Ed Engl ; 62(25): e202303750, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37042088

RESUMO

We propose a de novo glycan display approach that combines metabolic labeling and a glycan-caging strategy as a facile editing method for cell-surface glycans. This method enables the introduction of antigen glycans onto cancer cells to induce immune responses through antibody recruiting. The caging strategy prevents the capture of α-rhamnose (an antigen glycan) by endogenous antibodies during the introduction of the glycan to the targeted cell surface, and subsequent uncaging successfully induces immune responses. Therefore, this study proposes a practical method for editing the cell-surface glycocalyx under promiscuous conditions, such as those in vivo, which paves the way for the development of glycan function analysis and regulation.


Assuntos
Anticorpos , Polissacarídeos , Polissacarídeos/metabolismo , Membrana Celular/metabolismo , Ramnose
10.
Chemistry ; 28(61): e202201848, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35880726

RESUMO

We have synthesized B-antigen-displaying dendrimers (16-mers) with different sizes and evaluated their affinity to their IgM antibody in order to investigate which design features lead to effective multivalency. Unexpectedly, the smallest dendrimer, which cannot chelate the multiple binding sites of IgM, clearly exhibited multivalency, together with an affinity similar to or higher than those of the larger dendrimers. These results indicate that the statistical rebinding model, which involves the rapid exchange of clustered glycans, significantly contributes to the multivalency of glycodendrimers. Namely, in the design of glycodendrimers, high-density glycan presentation to enhance statistical rebinding should be considered in addition to the ability to chelate multiple binding sites. This notion stands in contrast to the currently prevailing scientific consensus, which prioritizes the chelation model. This study thus provides new and important guidelines for molecular design of glycodendrimers.


Assuntos
Dendrímeros , Dendrímeros/química , Polissacarídeos , Sítios de Ligação
11.
Cancer Sci ; 112(3): 1132-1140, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33277750

RESUMO

α-Methyl-l-tyrosine (AMT) has a high affinity for the cancer-specific l-type amino acid transporter 1 (LAT1). Therefore, we established an anti-cancer therapy, with 211 At-labeled α-methyl-l-tyrosine (211 At-AAMT) as a carrier of 211 At into tumors. 211 At-AAMT had high affinity for LAT1, inhibited tumor cell growth, and induced DNA double-stranded breaks in vitro. We evaluated the accumulation of 211 At-AAMT in vivo and the role of LAT1. Treatment with 0.4 MBq/mouse 211 At-AAMT inhibited tumor growth in the PANC-1 tumor model and 1 MBq/mouse 211 At-AAMT inhibited metastasis in the lung of the B16F10 metastasis model. Our results suggested that 211 At would be useful for anti-cancer therapy and that LAT1 is suitable as a target for radionuclide therapy.


Assuntos
Partículas alfa/uso terapêutico , Astato/administração & dosagem , Portadores de Fármacos/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/radioterapia , alfa-Metiltirosina/farmacologia , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
FASEB J ; 34(3): 3838-3854, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970839

RESUMO

The tumor microenvironment (TME) formation involving host cells and cancer cells through cell adhesion molecules (CAMs) is essential for the multiple steps of cancer metastasis and growth. Sphingomyelin synthase 2 (SMS2) is involved in inflammatory diseases such as obesity and diabetes mellitus by regulation of the SM/ceramide balance. However, the involvement of SMS2 in TME formation and metastasis is largely unknown. Here, we report that SMS2-deficient (SMS2-KO) mice show suppressed the EL4 cell infiltration to liver and prolonged survival time. ICAM-1 was identified as a candidate for the inhibition of TME formation in immortalized mouse embryonic fibroblasts (tMEFs) from mRNA array analysis for CAMs. Reduced SM/ceramide balance in SMS2-KO tMEFs suppressed the attachment of EL4 cells through transcriptional reduction of ICAM-1 by the inhibition of NF-κB activation. TNF-α-induced NF-κB activation and subsequent induction of ICAM-1 were suppressed in SMS2-KO tMEFs but restored by SMS2 re-introduction. In the EL4 cell infiltration mouse model, EL4 injection increased ICAM-1 expression in WT liver but not in SMS2-KO mouse liver. Therefore, inhibition of SMS2 may be a therapeutic target to suppress the infiltration of malignant lymphoma.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Cromatografia Líquida , Modelos Animais de Doenças , Citometria de Fluxo , Glucosiltransferases/metabolismo , Imuno-Histoquímica , Molécula 1 de Adesão Intercelular/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Fator de Necrose Tumoral alfa/farmacologia
13.
J Nanobiotechnology ; 19(1): 223, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320997

RESUMO

BACKGROUND: 211At is a high-energy α-ray emitter with a relatively short half-life and a high cytotoxicity for cancer cells. Its dispersion can be imaged using clinical scanners, and it can be produced in cyclotrons without the use of nuclear fuel material. This study investigated the biodistribution and the antitumor effect of 211At-labeled gold nanoparticles (211At-AuNP) administered intratumorally. RESULTS: AuNP with a diameter of 5, 13, 30, or 120 nm that had been modified with poly (ethylene glycol) methyl ether (mPEG) thiol and labeled with 211At (211At-AuNP-S-mPEG) were incubated with tumor cells, or intratumorally administered to C6 glioma or PANC-1 pancreatic cancers subcutaneously transplanted into rodent models. Systemic and intratumoral distributions of the particles in the rodents were then evaluated using scintigraphy and autoradiography, and the changes in tumor volumes were followed for about 40 days. 211At-AuNP-S-mPEG was cytotoxic when it was internalized by the tumor cells. After intratumoral administration, 211At-AuNP-S-mPEG became localized in the tumor and did not spread to systemic organs during a time period equivalent to 6 half-lives of 211At. Tumor growth was strongly suppressed for both C6 and PANC-1 by 211At-AuNP-S-mPEG. In the C6 glioma model, the strongest antitumor effect was observed in the group treated with 211At-AuNP-S-mPEG with a diameter of 5 nm. CONCLUSIONS: The intratumoral single administration of a simple nanoparticle, 211At-AuNP-S-mPEG, was shown to suppress the growth of tumor tissue strongly in a particle size-dependent manner without radiation exposure to other organs caused by systemic spread of the radionuclide.


Assuntos
Astato/uso terapêutico , Ouro/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Coloração e Rotulagem/métodos , Animais , Astato/química , Glioma , Ouro/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis , Cintilografia/métodos , Ratos , Distribuição Tecidual
14.
Angew Chem Int Ed Engl ; 60(18): 10023-10031, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33522128

RESUMO

Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4'-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate.


Assuntos
Alcaligenes faecalis/química , Lipídeo A/química , Lipopolissacarídeos/química , Animais , Configuração de Carboidratos , Linhagem Celular , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Lipídeo A/farmacologia , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Camundongos , Receptor 4 Toll-Like/agonistas
15.
Biochem Biophys Res Commun ; 532(1): 19-24, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32826055

RESUMO

Glycolipid metabolism occurs in the Golgi apparatus, but the detailed mechanisms have not yet been elucidated. We used fluorescently labeled glycolipids to analyze glycolipid composition and localization changes and shed light on glycolipid metabolism. In a previous study, the fatty chain of lactosyl ceramide was fluorescently labeled with BODIPY (LacCer-BODIPY) before being introduced into cultured cells to analyze the cell membrane glycolipid recycling process. However, imaging analysis of glycolipid recycling is difficult because of limited spatial resolution. Therefore, we examined the microscopic conditions that allow the temporal analysis of LacCer-BODIPY trafficking and localization. We observed that the glycolipid fluorescent probe migrated from the cell membrane to intracellular organelles before returning to the cell membrane. We used confocal microscopy to observe co-localization of the glycolipid probe with endosomes and Golgi markers, demonstrating that it recycles mainly through the trans-Golgi network (TGN). Here, a glycolipid recycling pathway was observed that did not require the lipids to pass through the lysosome.


Assuntos
Glicolipídeos/metabolismo , Animais , Transporte Biológico Ativo , Compostos de Boro , Células CHO , Membrana Celular/metabolismo , Cricetulus , Endossomos/metabolismo , Corantes Fluorescentes , Complexo de Golgi/metabolismo , Lactosilceramidas , Lisossomos/metabolismo , Microscopia Confocal , Modelos Biológicos , Análise Espaço-Temporal , Imagem com Lapso de Tempo , Rede trans-Golgi/metabolismo
16.
J Org Chem ; 85(24): 16014-16023, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33058668

RESUMO

Individual interactions between glycans and their receptors are usually weak, although these weak interactions can combine to realize a strong interaction (multivalency). Such multivalency plays a crucial role in the recognition of host cells by pathogens. Glycodendrimers are useful materials for the reconstruction of this multivalent interaction. However, the introduction of a large number of glycans to a dendrimer core is fraught with difficulties. We herein synthesized antipathogenic glycodendrimers using the self-activating click chemistry (SACC) method developed by our group. The excellent reactivity of SACC enabled the efficient preparation of sialyl glycan and Gb3 glycan dendrimers, which exhibited strong avidity toward hemagglutinin on influenza virus and Shiga toxin B subunit produced by Escherichia coli, respectively. We demonstrated the usefulness of SACC-based glycodendrimers as antipathogenic compounds.


Assuntos
Química Click , Dendrímeros , Polissacarídeos
17.
Org Biomol Chem ; 18(19): 3724-3733, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32364197

RESUMO

Glycosphingolipids (GSLs) are a group of molecules composed of a hydrophilic glycan part and a hydrophobic ceramide creating a diverse family. GSLs are de novo synthesised from ceramides at the endoplasmic reticulum and Golgi apparatus, and transported to the outer surface of the plasma membrane. It has been known that the glycan structures of GSLs change reflecting disease states. We envisioned that analysing the glycan pattern of GSLs enables distinguishing diseases. For this purpose, we utilised a fluorescently tagged compound, LacCerBODIPY (1). At first, compound 1 was taken up by cultured PC12D cells and transformed into various GSLs. As a result, changes in the GSL patterns of differentiation states of the cells were successfully observed by using an analysis platform, nano-liquid chromatography (LC)-fluorescence detection (FLD)-electrospray ionisation (ESI)-mass spectrometry (MS), which could quantify and provide molecular ions simultaneously. We found that compound 1 remained for about 10 min on the plasma membrane before it was converted into other GSLs. We therefore investigated a more rapid way to discriminate different cellular states by fluorescence recovery after photobleaching, which revealed that it is possible to distinguish the differentiation states as well.


Assuntos
Compostos de Boro/metabolismo , Membrana Celular/metabolismo , Lactosilceramidas/metabolismo , Polissacarídeos/metabolismo , Animais , Compostos de Boro/química , Membrana Celular/química , Lactosilceramidas/química , Estrutura Molecular , Células PC12 , Polissacarídeos/química , Ratos
18.
Angew Chem Int Ed Engl ; 59(40): 17705-17711, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32583549

RESUMO

Co-assembling vaccines composed of a lipidated HER2-derived antigenic CH401 peptide and either a lipophilic adjuvant, Pam3 CSK4 , α-GalCer, or lipid A 506, were evaluated as breast cancer vaccine candidates. This vaccine design was aimed to inherit both antigen multivalency and antigen-specific immunostimulation properties, observed in reported self-adjuvanting vaccine candidates, by using self-assembly and adjuvant-conjugated antigens. Under vaccination concentrations, respective lipophilic adjuvants underwent co-assembly with lipidated CH401, which boosted the anti-CH401 IgG and IgM production. In particular, α-GalCer was responsible for the most significant immune activation. Therefore, the newly developed vaccine design enabled the optimization of adjuvants against the antigenic CH401 peptide in a simple preparatory manner. Overall, the co-assembling vaccine design opens the door for efficient and practical self-adjuvanting vaccine development.


Assuntos
Adjuvantes Imunológicos/química , Neoplasias da Mama/tratamento farmacológico , Vacinas Anticâncer/uso terapêutico , Peptídeos/imunologia , Animais , Antígenos/química , Antígenos/imunologia , Neoplasias da Mama/patologia , Vacinas Anticâncer/química , Feminino , Galactosilceramidas/química , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Lipopeptídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química
19.
Angew Chem Int Ed Engl ; 58(14): 4526-4530, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30756454

RESUMO

Cancer treatment with antibodies (Abs) is one of the most successful therapeutic strategies for obtaining high selectivity. In this study, α-gal-Ab conjugates were developed that dramatically increased cellular cytotoxicity by recruiting natural Abs through the interaction between α-gal and anti-gal Abs. The potency of the α-gal-Ab conjugates depended on the amount of α-gal conjugated to the antibody: the larger the amount of α-gal introduced, the higher the level of cytotoxicity observed. The conjugation of antibodies with an α-gal dendrimer allowed the introduction of large amounts of α-gal to the Ab, without loss of affinity for the target cell. The method described here will enable the re-development of Abs to improve their potency.


Assuntos
Anticorpos/imunologia , Neoplasias/imunologia , Trissacarídeos/imunologia , Anticorpos/química , Configuração de Carboidratos , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Humanos , Neoplasias/patologia , Neoplasias/terapia , Trissacarídeos/síntese química , Trissacarídeos/química
20.
Angew Chem Int Ed Engl ; 58(51): 18697-18702, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31625659

RESUMO

The core fucose, a major modification of N-glycans, is implicated in immune regulation, such as the attenuation of the antibody-dependent cell-mediated cytotoxicity of antibody drugs and the inhibition of anti-tumor responses via the promotion of PD-1 expression on T cells. Although the core fucose regulates many biological processes, no core fucose recognition molecule has been identified in mammals. Herein, we report that Dectin-1, a known anti-ß-glucan lectin, recognizes the core fucose on IgG antibodies. A combination of biophysical experiments further suggested that Dectin-1 recognizes aromatic amino acids adjacent to the N-terminal asparagine at the glycosylation site as well as the core fucose. Thus, Dectin-1 appears to be the first lectin-like molecule involved in the heterovalent and specific recognition of characteristic N-glycans on antibodies.


Assuntos
Fucose/metabolismo , Imunoglobulina G/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA